【一起入门MachineLearning】中科院机器学习第*课-聚类算法:层次聚类

专栏介绍:本栏目为 “2021秋季中国科学院大学周晓飞老师的机器学习” 课程记录,不仅仅是课程笔记噢~ 如果感兴趣的话,就和我一起入门Machine Learning吧🥰

基本思想

层次聚类策略

  • 类簇之间(依据相似性)不断合并或者不断分化,直到满足聚类停止条件。

分类

  • 自底向上/归并算法
  • 自顶向下/分化算法

参考:https://www.bilibili.com/video/BV1Az4y1f78d?from=search&seid=4445699556387466708&spm_id_from=333.337.0.0
注:下文我们讨论的是自底向上的归并过程。

步骤

  • 假设算法开始时有n个结点(n是样本容量)
  • 合并两个最相似的结点(similar/disdence),similar有很多算法,disdance只是其中一种
  • 计算由多个数据点组成的clusters之间的方法
    • single link:找到两组中最近的两个点连起来,这个距离就是他们的新disdance

    • 在这里插入图片描述

    • complete link : 找到两组中最远的两个点连起来,这个距离就是他们的新distance

    • 在这里插入图片描述

    • 还有其他的link方式

  • 不停地重复第二步直到达到想要的簇的数量。

例子

这里我们只以 single link 作为例子来讨论。

样本点之间的距离如下图所示,AC之间的距离是6.29,是所有距离中最小的,从此处开始聚类。
在这里插入图片描述

  1. 计算各个点到A点的距离,其中C点到A点最近,将AC合并为一个组
    在这里插入图片描述
  2. 分别计算A点和C点到其他点的距离,发现是C到其他点的距离最短。
    在这里插入图片描述
  3. 将C点到其他点的距离,设定为AC组到其他点的距离。同时观察除去AC之外其他点两两之间的距离,此时B点到AC组是最短距离,因此将B点也归入AC组。
    在这里插入图片描述
  4. 接下来重复第二个步骤,判断得到ABC三个点,B才是距离其他点更近的点。
    在这里插入图片描述
  5. 将用B到其他点的距离,设定为ABC组到其他点的距离。同时观察除去ABC之外其他点两两之间的距离,发现此时D到ABC组是最短距离,因此将D点也归入ABC组。
    在这里插入图片描述
  6. 继续重复,直到把最后一个点也归入。
    在这里插入图片描述
  7. 按照归并的顺序,我们可以构造处一棵树。
    在这里插入图片描述

其他例题可以看这个博客:【一起入门MachineLearning】中科院机器学习-期末题库-【计算题14+多选题10】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vector<>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值