- 题目:Meta-GNN: On Few-shot Node Classification in Graph Meta-learning
- 会议:CIKM (CCF-B)
- 链接:https://dl.acm.org/doi/pdf/10.1145/3357384.3358106
- 源码:https://github.com/AI-DL-Conference/Meta-GNN
- 时间:2019年11月
- 摘要:用GNN来实现小样本分类,运用元学习的策略来训练模型。用到的gnn模型是SGC 和 GCN ,没有对gnn模型任何创新性的改造,但是将gnn上的元学习实验过程描述得很清楚,并且提供了各种baseline的代码,对gnn+小样本的实验有参考价值,总体而言比较基础。
介绍
贡献:
- 提出了一种新的基于图的节点分类学习模式。与之前的工作不同的是,本文的目标是从新的类中分类节点,每个节点只有很少的样本。
- 提出了一个解决少样本节点分类的通用框架,该框架可以很容易地与任何流行的gnn模型结合,为graph分析开辟了一个新的视角。
- 三个基准数据集上,证明了该方法优于几种最先进的gnn模型。</