【论文分享】GNN+小样本文本分类方法:Meta-GNN: On Few-shot Node Classification in Graph Meta-learning

28 篇文章 54 订阅 ¥49.90 ¥99.00
论文Meta-GNN在CIKM 2019中提出,它利用元学习策略解决图数据的小样本节点分类问题。通过结合SGC和GCN,Meta-GNN在三个基准数据集上表现出优越性能,为图分析提供新视角。文章详细阐述了问题定义、GNN原理及Meta-GNN框架,包括样本抽取、元训练和元测试过程。
摘要由CSDN通过智能技术生成
  • 题目:Meta-GNN: On Few-shot Node Classification in Graph Meta-learning
  • 会议:CIKM (CCF-B)
  • 链接:https://dl.acm.org/doi/pdf/10.1145/3357384.3358106
  • 源码:https://github.com/AI-DL-Conference/Meta-GNN
  • 时间:2019年11月
  • 摘要:用GNN来实现小样本分类,运用元学习的策略来训练模型。用到的gnn模型是SGC 和 GCN ,没有对gnn模型任何创新性的改造,但是将gnn上的元学习实验过程描述得很清楚,并且提供了各种baseline的代码,对gnn+小样本的实验有参考价值,总体而言比较基础。

介绍

贡献:

  1. 提出了一种新的基于图的节点分类学习模式。与之前的工作不同的是,本文的目标是从新的类中分类节点,每个节点只有很少的样本。
  2. 提出了一个解决少样本节点分类的通用框架,该框架可以很容易地与任何流行的gnn模型结合,为graph分析开辟了一个新的视角。
  3. 三个基准数据集上,证明了该方法优于几种最先进的gnn模型。</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vector<>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值