【论文分享】小样本文本分类方法 EGNN-Proto:Few-Shot Text Classification with Edge-Labeling Graph Network-Based Proto

28 篇文章 11 订阅 ¥49.90 ¥99.00
本文介绍了EGNN-Proto模型,它结合BERT和边标记图神经网络来改善原型网络,提升小样本文本分类任务的性能。EGNN-Proto在ARSC和FewRel数据集上的实验结果显示了其优越性。
摘要由CSDN通过智能技术生成
  • 题目:Few-Shot Text Classification with Edge-Labeling Graph Neural Network-Based Prototypical Network
  • 链接:https://aclanthology.org/2020.coling-main.485.pdf
  • 源码:-
  • 时间:2020.12
  • 会议:COLING (CCF-B)
  • 机构:北京大学
  • 摘要:提出了一个小样本文本分类模型:EGNN-Proto。利用预训练语言模型BERT学习文本嵌入,并通过edge-labeling graph neural network改进了prototypical network,以更好地刻画和利用文本之间的关系,从而在小样本的文本分类任务中获得更好的性能。
  • 其他:这篇文章去掉参考文献,一共就4页,方法也比较简单,但是确实一篇B诶,留下羡慕的眼泪~😭😭

介绍

动机:

  • 第一:现存的小样本文本分类方法都采用GloVe词嵌入结合CNN或RNN结
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vector<>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值