小样本学习之半监督的小样本分类

本次介绍的论文:

2018 - ICLR - 《Meta-Learning for Semi-Supervised Few-ShotClassification》

在上篇博客中介绍了原型网络,一种基于度量的小样本分类方法,核心思想便是在一个嵌入空间中将所有同类的样本拉到较近的位置,然后通过距离度量的方式来判断一个样本x属于哪一个类。对于原型网络,这是一个监督学习,即训练数据全都是有标签的数据。在实际生活中,一般我们需要解决的小样本分类问题应该是半监督的,因为在很多领域,例如医疗、航天等,会有很多没有标注过的信息,这些信息中部分是有用的,但是如果全都进行人工标注,是很费时费力的。所以,实际的小样本分类问题应该是只有少量已标注好的样本和很多未标注的样本,这些未标注的样本中有和已标注样本同类别的,也有不同类别的。本篇所讲的论文便是解决这样的问题,也就是半监督的小样本学习,在原型网络的基础上做的三种扩展。

首先先简单回顾一下原型网络,原型:

p_{c}=\tfrac{\sum_{i}h(x_{i})z_{i,c} }{\sum_{i}z_{i,c} }, where \quad z_{i,c}=1[y_{i}=c]

这个原型的公式与上篇博客所讲的公式意义一样,都是求类c中所有样本特征的平均值。然后对于一个样本x,其属于类c的概率:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值