2021-04-23

这篇博客探讨了如何利用递归神经网络(RNN)在短文本中捕捉单词间的量化关系,提出RIBS-TM模型,它是基于ABTM模型的改进,并特别强调了先验知识学习和IDF在模型参数β中的应用。实验部分展示了模型在短文本主题发现方面的性能。
摘要由CSDN通过智能技术生成

RIBS-TM(未完)

Don’t forget the quantifiable relationship between words: Using recurrent neural network for short text topic discovery

Lu H Y, Xie L Y, Kang N, et al. Don’t forget the quantifiable relationship between words: Using recurrent neural network for short text topic discovery[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2017, 31(1).


提示:本系列作为个人笔记使用,未经授权禁止转载


Contributions

  1. 基于BTM (A Biterm Topic Model for Short Texts, WWW, 2013)模型基础修改
  2. 通过Elman(RNN模型)学习先验知识
  3. 引入IDF至β

一、Model

Problem Setting

  1. 给定Corpus D,其中 document 数目为ND,word 数目为W。K 表示topic 数目

先验知识

生成过程

在这里插入图片描述在这里插入图片描述

Prior Knowledge Learning

二、Experiments

三、Related Work


总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

教学辅助平台的出现,是为了更好地服务于教育工作者和学生,提高教学效果和学习效率。该平台集成了多个功能模块,旨在为用户提供全面、便捷的教学辅助服务。 平台首页作为导航入口,提供了清晰的界面布局和便捷的导航功能,方便用户快速找到所需功能。需要注意的是,“首页”这一选项在导航菜单中出现了多次,可能是设计上的冗余,需要进一步优化。 “个人中心”模块允许用户查看和管理自己的个人信息,包括修改密码等账户安全设置,确保用户信息的准确性和安全性。 在教育教学方面,“学生管理”和“教师管理”模块分别用于管理学生和教师的信息,包括学生档案、教师资料等,方便教育工作者进行学生管理和教学安排。同时,“课程信息管理”、“科目分类管理”和“班级分类管理”模块提供了课程信息的发布、科目和班级的分类管理等功能,有助于教育工作者更好地组织和管理教学内容。 此外,“课程作业管理”模块支持教师布置和批改作业,学生可以查看和提交作业,实现了作业管理的线上化,提高了教学效率。而“交流论坛”模块则为学生和教师提供了一个交流和讨论的平台,有助于促进师生互动和学术交流。 最后,“系统管理”模块为平台管理员提供了系统配置.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值