RIBS-TM(未完)
Don’t forget the quantifiable relationship between words: Using recurrent neural network for short text topic discovery
Lu H Y, Xie L Y, Kang N, et al. Don’t forget the quantifiable relationship between words: Using recurrent neural network for short text topic discovery[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2017, 31(1).
提示:本系列作为个人笔记使用,未经授权禁止转载
目录
Contributions
- 基于BTM (A Biterm Topic Model for Short Texts, WWW, 2013)模型基础修改
- 通过Elman(RNN模型)学习先验知识
- 引入IDF至β
一、Model
Problem Setting
- 给定Corpus D,其中 document 数目为ND,word 数目为W。K 表示topic 数目
先验知识
生成过程
Prior Knowledge Learning
二、Experiments
三、Related Work
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。