N维数组样例
N维数组是机器学习和神经网络的主要数据结构
创建张量
创建张量需要:
1.形状:例如3 * 4矩阵
2.每个元素的数据类型:例如32位浮点数
3.每个元素的值,例如全是0,或者随机数
访问元素
代码实现
导入pytorch
import torch
张量表示由一个数值组成的数组,这个数组可能有多个维度
x = torch.arange(12)
tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
可以通过张量的 shape 属性来访问张量的形状 和张量中元素的总数
x.shape
torch.Size([12])
x.numel() # x中元素的总数 12
改变一个张量的形状而不改变元素数量和元素值,可以调用 reshape 函数
X = x.reshape(3, 4)
tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
使用全0、全1、其他常量或者从特定分布中随机采样的数字
torch.zeros((2, 3, 4))
tensor([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
torch.ones((2, 3, 4))
tensor([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])
torch.randn(3, 4)
tensor([[ 0.2104, 1.4439, -1.3455, -0.8273],
[ 0.8009, 0.3585, -0.2690, 1.6183],
[-0.4611, 1.5744, -0.4882, -0.5317]])
通过提供包含数值的 Python 列表(或嵌套列表)来为所需张量中的每个元素赋予确定值
torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
tensor([[2, 1, 4, 3],
[1, 2, 3, 4],
[4, 3, 2, 1]])
标准算术运算符(+、-、*、/ 和 **) 均为按元素运算
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x**y
(tensor([ 3., 4., 6., 10.]),
tensor([-1., 0., 2., 6.]),
tensor([ 2., 4., 8., 16.]),
tensor([0.5000, 1.0000, 2.0000, 4.0000]),
tensor([ 1., 4., 16., 64.]))
torch.exp(x) # 指数运算
tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])
连结两个张量
X = torch.arange(12, dtype=torch.float32).reshape((3, 4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0) # 按维度0连结
torch.cat((X, Y), dim=1) # 按维度1连结
(tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 2., 1., 4., 3.],
[ 1., 2., 3., 4.],
[ 4., 3., 2., 1.]]),
tensor([[ 0., 1., 2., 3., 2., 1., 4., 3.],
[ 4., 5., 6., 7., 1., 2., 3., 4.],
[ 8., 9., 10., 11., 4., 3., 2., 1.]]))
逻辑运算符 构建二元张量
X == Y
tensor([[False, True, False, True],
[False, False, False, False],
[False, False, False, False]])
X.sum() # 对张量所有元素求和
广播机制:形状不同,调用 广播机制 (broadcasting mechanism) 来执行按元素操作
使用广播,让形状不同的两个张量按0补齐形状后再进行对应元素的计算
a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a, b
(tensor([[0],
[1],
[2]]),
tensor([[0, 1]]))
a + b
tensor([[0, 1],
[1, 2],
[2, 3]])
用 [-1] 选择最后一个元素,可以用 [1:3] 选择第二个和第三个元素
X[-1], X[1:3]
(tensor([ 8., 9., 10., 11.]),
tensor([[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]]))
通过指定索引来将元素写入矩阵
X[1, 2] = 9
多个元素赋值相同的值
X[0:2, :] = 12
tensor([[12., 12., 12., 12.],
[12., 12., 12., 12.],
[ 8., 9., 10., 11.]])
为新结果分配内存
before = id(Y)
Y = Y + X
id(Y) == before # 不是原地操作
False
执行原地操作
Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))
id(Z): 140452400950336
id(Z): 140452400950336
在后续计算中没有重复使用 X,我们也可以使用 X[:] = X + Y 或 X += Y 来减少操作的内存开销
before = id(X)
X += Y # 注意与上面进行区分 Y = Y + X
id(X) == before
True
注:在不重复使用的情况下,可用这种方式节省内存开销;如果后面还有操作会使用,就用新的命名
转换为 NumPy 张量
A = X.numpy()
B = torch.tensor(A)
type(A), type(B)
大小为1的张量转换为 Python 标量
a = torch.tensor([3.5])
a, a.item(), float(a), int(a)
(tensor([3.5000]), 3.5, 3.5, 3)
总结
1.介绍机器学习与神经网络中的数据结构
2.一些基本的数据操作