线性代数基础

标量

在这里插入图片描述

向量

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

特殊矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码实现

标量

标量由只有一个元素的张量表示

import torch

x = torch.tensor([3.0])
y = torch.tensor([2.0])

x + y, x * y, x / y, x**y

(tensor([5.]), tensor([6.]), tensor([1.5000]), tensor([9.]))

向量

可将向量视为标量值组成的列表

x = torch.arange(4)
x

tensor([0, 1, 2, 3])

通过张量的索引来访问任一元素

x[3]

访问张量的长度

len(x)

只有一个轴的张量,形状只有一个元素

x.shape

torch.Size([4])

指定两个分量𝑚和 𝑛来创建一个形状为𝑚×𝑛的矩阵

A = torch.arange(20).reshape(5, 4)
A

tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])

矩阵的转置

A.T

tensor([[ 0, 4, 8, 12, 16],
[ 1, 5, 9, 13, 17],
[ 2, 6, 10, 14, 18],
[ 3, 7, 11, 15, 19]])

构建具有更多轴的数据结构

X = torch.arange(24).reshape(2, 3, 4)
X

tensor([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

给定具有相同形状的任意两个张量,任何按元素二元运算的结果都将是相同形状的张量

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()
A, A + B

(tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]]),
tensor([[ 0., 2., 4., 6.],
[ 8., 10., 12., 14.],
[16., 18., 20., 22.],
[24., 26., 28., 30.],
[32., 34., 36., 38.]]))

哈达玛积(Hadamard product)

两个矩阵的按元素乘法称为哈达玛积(Hadamard product)(数学符号⊙)

A * B

tensor([[ 0., 1., 4., 9.],
[ 16., 25., 36., 49.],
[ 64., 81., 100., 121.],
[144., 169., 196., 225.],
[256., 289., 324., 361.]])

a = 2
X = torch.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape

(tensor([[[ 2, 3, 4, 5],
[ 6, 7, 8, 9],
[10, 11, 12, 13]],
[[14, 15, 16, 17],
[18, 19, 20, 21],
[22, 23, 24, 25]]]),
torch.Size([2, 3, 4]))

计算其元素的和

x = torch.arange(4, dtype=torch.float32)
x, x.sum()

(tensor([0., 1., 2., 3.]), tensor(6.))

表示任意形状张量的元素和

A.shape, A.sum()

(torch.Size([5, 4]), tensor(190.))

按轴对张量求和降低维度

A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape

(tensor([40., 45., 50., 55.]), torch.Size([4])) A本身为二维矩阵,从0维求和即按列求和

A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape

(tensor([ 6., 22., 38., 54., 70.]), torch.Size([5]))A本身为二维矩阵,从1维求和即按行求和

A.sum(axis=[0, 1])  # A本身为二维矩阵,此处等价于A.sum()

tensor(190.)

平均值

A.mean(), A.sum() / A.numel()  # A.numel() 求A的元素个数

(tensor(9.5000), tensor(9.5000))

A.mean(axis=0), A.sum(axis=0) / A.shape[0]  # 按列求平均值

(tensor([ 8., 9., 10., 11.]), tensor([ 8., 9., 10., 11.]))

计算总和或均值时保持轴数不变

sum_A = A.sum(axis=1, keepdims=True)
sum_A

tensor([[ 6.],
[22.],
[38.],
[54.],
[70.]])

通过广播将A除以sum_A

A / sum_A

tensor([[0.0000, 0.1667, 0.3333, 0.5000],
[0.1818, 0.2273, 0.2727, 0.3182],
[0.2105, 0.2368, 0.2632, 0.2895],
[0.2222, 0.2407, 0.2593, 0.2778],
[0.2286, 0.2429, 0.2571, 0.2714]])

某个轴计算A元素的累积总和

A.cumsum(axis=0)

A本身为:
tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]])
A.cumsum(axis=0)结果为:
tensor([[ 0., 1., 2., 3.],
[ 4., 6., 8., 10.],
[12., 15., 18., 21.],
[24., 28., 32., 36.],
[40., 45., 50., 55.]])

点积

点积是相同位置的按元素乘积的和

y = torch.ones(4, dtype=torch.float32)
x, y, torch.dot(x, y)

(tensor([0., 1., 2., 3.]), tensor([1., 1., 1., 1.]), tensor(6.))

可以通过执行按元素乘法,然后进行求和来表示两个向量的点积

torch.sum(x * y)

矩阵向量积𝐀𝐱

在这里插入图片描述

A.shape, x.shape, torch.mv(A, x)

(torch.Size([5, 4]), torch.Size([4]), tensor([ 14., 38., 62., 86., 110.]))

矩阵乘法𝐀𝐁

B = torch.ones(4, 3)
torch.mm(A, B)

tensor([[ 6., 6., 6.],
[22., 22., 22.],
[38., 38., 38.],
[54., 54., 54.],
[70., 70., 70.]])

范数

𝐿2 范数是向量元素平方和的平方根
在这里插入图片描述

u = torch.tensor([3.0, -4.0])
torch.norm(u)

tensor(5.)

𝐿1 范数,它表示为向量元素的绝对值之和
在这里插入图片描述

torch.abs(u).sum()

矩阵 的弗罗贝尼乌斯范数(Frobenius norm)是矩阵元素平方和的平方根
在这里插入图片描述

torch.norm(torch.ones((4, 9)))

tensor(6.)

总结

1.线性代数的一些基础计算
2.张量的一些基本运算操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值