神经网络自动求导

向量的链式法则

标量链式法则

在这里插入图片描述

向量链式法则

在这里插入图片描述

例一

在这里插入图片描述

例二

在这里插入图片描述

自动求导

自动求导计算一个函数在指定值上的导数
它有别于:
在这里插入图片描述

计算图

将代码分解成操作子
将计算表示成一个无环图
在这里插入图片描述
显示构造(MXNet / Tensorflow / Theano)
在这里插入图片描述
在这里插入图片描述
隐式构造(pytorch / MXNet)

自动求导的两种模式

链式法则

在这里插入图片描述

正向累积

在这里插入图片描述

反向累积(反向传递)

在这里插入图片描述

反向累积计算过程

1.有正向计算结果
在这里插入图片描述
2.
在这里插入图片描述
3.
在这里插入图片描述
4.
在这里插入图片描述

反向累积总结

在这里插入图片描述

复杂度

在这里插入图片描述

自动求导的简单代码实现

对函数y = 2xTx关于列向量x求导

import torch

x = torch.arange(4.0)

x.requires_grad_(True)  # 设置存储梯度, x.grad()默认值是None

y = 2 * torch.dot(x, x)  # 计算y

print(y)

y.backward()  # 调用反向传播函数来自动计算y关于x每个分量的梯度

print(x.grad)  # 打印梯度

print(x.grad == 4 * x)

执行结果
tensor(28., grad_fn=) # 表示已设置需要存储梯度
tensor([ 0., 4., 8., 12.])
tensor([True, True, True, True])

当需要计算x的另一个函数

x.grad.zero_()  # 首先把梯度清0
y = x.sum()  # 例如此y
y.backward()  # 计算梯度
print(x.grad)

tensor([1., 1., 1., 1.])

计算批量中每个样本单独的偏导数之和

深度学习中 ,我们的目的不是计算微分矩阵,而是批量中每个样本单独计算的偏导数之和

x.grad.zero_()  # 把梯度清0
y = x * x  # 例如此y
z = y.sum()
z.backward()
print(x.grad)

tensor([0., 2., 4., 6.])

将某些计算移动到记录的计算图之外

x.grad.zero_()
y = x * x
u = y.detach()  # 移到计算图之外
z = u * x

z.sum().backward()
x.grad == u

tensor([True, True, True, True])

带控制流计算梯度

即使构建函数的计算图需要通过Python控制流(例如,条件、循环或任意函数调用),我们仍然可以计算得到的变量的梯度

def f(a):
    b = a * 2
    while b.norm() < 1000:
        b = b * 2
    if b.sum() > 0:
        c = b
    else:
        c = 100 * b
    return c

a = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()

a.grad == d / a
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值