[随笔]观3b1b微积分的笔记

微积分随笔

学习资料是3blue1brown的《微积分的本质》系列视频。

积分

对于曲线F(x),其积分就是该线条与x=0和x= x 0 x_0 x0以及y轴围成的封闭区域的面积,该面积随 x 0 x_0 x0的取值而变化,即与x有关,因此也是一个函数,若写为A(x),则A(x) is the Integral of F(x)

导数的矛盾

一开始接触导数有人说导数是瞬时变化率。但是这隐含着一个矛盾:瞬时是一个点,变化率则不止一个点。这是一个“切片”与“片段”的矛盾。

F(t)的变化率,或者说导数,就是dF/dt。这是某一点附近的近似。以路程-时间(s-t)函数为例,变化率就是速度,但是单拿一点是没法说它速度的,因为在只确定某一点时带来的信息只有位置,但是结合极短时间内的位置变化,可以求出一个速度。

d s d t = s ( t + d t ) − s ( t ) d t ︸ d t → 0 {\frac{{ds}}{{dt}}=\mathop{\mathop{{\frac{{s \left( t+dt \left) -s \left( t \right) \right. \right. }}{{dt}}}}\limits_{︸}}\limits_{{dt \to 0}}} dtds=dt0dts(t+dt)s(t)

使用d修饰一个变量则代表希望它的值很小,但不代表这个值就是0或者无穷小。这样,上面的式子其实就是求t变化量越来越小时这个比值的极限。dt越来越小。但是单单仅凭某一点是无法求出速度的(汽车里程表的例子,它也是统计极小一段时间的移动路程与消耗时间的比值作为瞬时速度)。等dt足够小,ds/dt就是变化率的最佳近似。

导数不是瞬时变化率,而是变化率的最佳近似。

链式法则

d d x g ( h ( x ) ) = d g d h d h d x {\frac{{d}}{{dx}}g \left( h \left( x \left) \left) =\frac{{dg}}{{dh}}\frac{{dh}}{{dx}}\right. \right. \right. \right. } dxdg(h(x))=dhdgdxdh

take sin( x 2 x^2 x2) as example, using h to replace x 2 x^2 x2. So d s i n ( x 2 ) d x \frac{dsin(x^2)}{dx} dxdsin(x2) equals to d s i n ( h ) d h \frac{dsin(h)}{dh} dhdsin(h), which is c o s ( h ) d h cos(h) dh cos(h)dh, and since d h dh dh is equals to d x 2 dx^2 dx2, and d x 2 dx^2 dx2 equals to 2 x d x 2xdx 2xdx, so using x to replace h could get c o s ( x 2 ) 2 x d x cos(x^2)2xdx cos(x2)2xdx

so d s i n ( x 2 ) d x = c o s ( x 2 ) 2 x \frac{dsin(x^2)}{dx}=cos(x^2)2x dxdsin(x2)=cos(x2)2x

指数函数

对于 M ( t ) = 2 t M(t)=2^t M(t)=2t,有 d M d t = 2 t + d t − 2 t d t = 2 t × 2 d t − 1 d t \frac{dM}{dt}=\frac{2^{t+dt}-2^t}{dt}=2^t\times\frac{2^{dt}-1}{dt} dtdM=dt2t+dt2t=2t×dt2dt1,随着 d t → 0 dt \rightarrow 0 dt0该值会趋近于一个常数0.6931472……。这意味着最后的结果和M(t)本身有关,事实上就是与M(t)成比例,在底为2时这个比例为0.6931472……。并且该性质不是 2 t 2^t 2t独有的,对于任意底的指数函数,都有类似的性质,即趋于某个特定的常数,例如对于底为3也就是 M ( t ) = 3 t M(t)=3^t M(t)=3t,该常数趋近于1.0986123……

然后底是8时的常数约为2.0794……大概是底为2的3倍。这其中肯定有一些规律。

一个有趣的点是肯定存在一个底,它的常数是1,这样对它求导值是它本身,言至于此学过导数的都知道这个底是e了,约等于2.7818……,e的值也是这样定义出来的。显然对于 M ( t ) = e t M(t)=e^t M(t)=et,其曲线上任意一点的切线的斜率都等于该点到x轴的距离。

综上,最终会发现, 2 = e l n ( 2 ) 2=e^{ln(2)} 2=eln(2),所以 2 t = e t l n ( 2 ) 2^t=e^{tln(2)} 2t=etln(2),对 2 t 2^t 2t求导就是对 e t l n ( 2 ) e^{tln(2)} etln(2)求导,结果就是 l n ( 2 ) e t l n ( 2 ) = l n ( 2 ) 2 t ln(2)e^{tln(2)}=ln(2)2^t ln(2)etln(2)=ln(2)2t

于是底为2时趋近于一个常数0.6931472就是 l n ( 2 ) ln(2) ln(2),这一切都联系起来了。

所以指数函数的求导公式就是

( a x ) ′ = ( a x ) l n a (a^x)' = (a^x)lna (ax)=(ax)lna

而且上面底为8的常数为什么大约是底为2的三倍也就迎刃而解了。

最后,写 a t a^t at也可以写为 e c t e^{ct} ect,由不同的常数c表示不同的底。

这类函数的变化率是和那一时刻自身的量有关系的。

隐函数求导

对于 y = l n ( x ) y=ln(x) y=ln(x)可以转换为 e y = x e^y=x ey=x,因此有 e y d y = d x e^ydy=dx eydy=dx,则:

d y d x = d ( l n ( x ) ) d x = 1 e y = 1 e l n ( x ) = 1 x \frac{dy}{dx}=\frac{d(ln(x))}{dx}=\frac{1}{e^y}=\frac{1}{e^{ln(x)}}=\frac{1}{x} dxdy=dxd(ln(x))=ey1=eln(x)1=x1

隐函数求导其实是将两个变量联系在一起,能联系在一起的原因是有其变化都受某个因素的影响。

求极限

lim x → 1 s i n ( π x ) x 2 − 1 \mathop{{ \text{lim} }}\limits_{{x \to 1}} \frac{sin(\pi x)}{x^2-1} x1limx21sin(πx)

显然 s i n ( π x ) = π c o s ( π x ) d x sin(\pi x)=\pi cos(\pi x)dx sin(πx)=πcos(πx)dx,而 x 2 − 1 = 2 x d x x^2-1=2xdx x21=2xdx,上下一作比就是 π c o s ( π x ) 2 x \frac{\pi cos(\pi x)}{2x} 2xπcos(πx),再带入x=1就是 − π 2 \frac{-\pi}{2} 2π

然后就突然发现,这不就是洛必达法则(L’Hopital Rule)嘛。

是这样的,总体思路就是虽然因为某些情况取不到一些特定的点,但是在极限存在的情况下,还是有别的方法可以求的。在该点附近,x轴移动dx后,这个比值式子的上下两部分都会变化,虽然这个点取不到,但是附近的点可以取到,由于附近的点横坐标距离那个取不到的特定的点为dx,因此dx足够小时就有这个附近的点足够逼近目标值。

所以洛必达法则的思想如下:

lim x → a f ( x ) g ( x ) = d f d x ( a ) d x d g d x ( a ) d x = d f d g \mathop{{ \text{lim} }}\limits_{{x \to a}} \frac{f(x)}{g(x)}=\frac{\frac{df}{dx}(a)dx}{\frac{dg}{dx}(a)dx}=\frac{df}{dg} xalimg(x)f(x)=dxdg(a)dxdxdf(a)dx=dgdf

这非常适合解决某些 0 0 \frac{0}{0} 00的极限问题

高阶导数

二阶导数的写法是 d 2 f d x 2 \frac{d^2f}{dx^2} dx2d2f,这样写的缘由是在原函数上某点旁边取两段相邻的dx,由于每个dx必然对应一个df,因此两个df的差 d ( d f ) d(df) d(df)就是导数的变化率。也就是导数的导数,或者说是二阶导数 d ( d f ) ( d x ) 2 = d 2 f d x 2 \frac{d(df)}{(dx)^2}=\frac{d^2f}{dx^2} (dx)2d(df)=dx2d2f,这也就解释了平方符号加的位置不一样的原因了。

高阶导数最大的作用是帮助得到函数的近似。也就是下面的级数。

泰勒级数

泰勒级数是强大的数学近似工具,所以用处也是近似估计某点处的值。在x=0处的值是一种特殊情况,也是一种基本情况,被称之为麦克劳林级数。

例如对于cos(x)这个函数,在x=0点的近似,我们构造一个函数 c 0 + c 1 x + c 2 x 2 … … c_0+c_1x+c_2x^2…… c0+c1x+c2x2这样x的n次方项可以有很多,并且越多则越精确。

首先希望的是f(0)=1时,构造的函数能也为1。因此 c 0 = 1 c_0=1 c0=1,依次类推,我们进一步期望cos(x)的一阶导数在x=0处的值和我们构造函数的一阶导数在x=0处的值相同,所以 x 1 = 0 x_1=0 x1=0,如法炮制,我们希望f的每一阶的导数和我们构造的函数的导数在x=0处的取值能相似。因此就能得到类似于 P ( x ) = 1 − 1 2 x 2 + 1 24 x 4 P(x)=1-\frac{1}{2}x^2+\frac{1}{24}x^4 P(x)=121x2+241x4的式子。

对于两个式子在0附近的结果比较如下:

P(0.1)=0.9950041666666667
cos(0.1)=0.9950041652780258

显然这样的误差已经很小了。

上面提到麦克劳林级数是泰勒级数的一种特殊情形,是因为取值是0,因为0的存在,在求构造函数的某阶导数时剩下的含 x n x^n xn项可以因为x=0而消去,也就是只考虑常数项。

上面还说这也是一种基本情况,因为其他某 x 0 x_0 x0点的级数可以通过将 x x x替换为 x − x 0 x-x_0 xx0进行后续处理。例如对于 f ( x ) = c o s ( x ) f(x)=cos(x) f(x)=cos(x) x = π x = \pi x=π时就可以这样:

P π ( x ) = c 0 + c 1 ( x − π ) 1 + c 2 ( x − π ) 2 + c 3 ( x − π ) 3 + c 4 ( x − π ) 4 P_\pi(x)=c_0+c_1(x-\pi)^1+c_2(x-\pi)^2+c_3(x-\pi)^3+c_4(x-\pi)^4 Pπ(x)=c0+c1(xπ)1+c2(xπ)2+c3(xπ)3+c4(xπ)4

然后用这个函数 P π ( π ) P_\pi(\pi) Pπ(π)的本身值与 cos ⁡ ( π ) \cos(\pi) cos(π)处的本身值相等,进一步地让它们的高阶导数的值也相等,直到达到预计的精确度。

这一系列的操作都和前几章讲过的视频息息相关,也就是函数及其导数之间的联系。我们期望通过这样一系列操作能够将将某点附近的导数信息转化为某点附近的函数值的信息。

最终整理出来的就是教科书的经典写法:

P ( x ) = f ( 0 ) + d f d x ( 0 ) x 1 1 ! + d 2 f d x 2 ( 0 ) x 2 2 ! + d 3 f d x 3 ( 0 ) x 3 3 ! + . . . . . . P(x)=f(0)+\frac{df}{dx}(0)\frac{x^1}{1!}+\frac{d^2f}{dx^2}(0)\frac{x^2}{2!}+\frac{d^3f}{dx^3}(0)\frac{x^3}{3!}+...... P(x)=f(0)+dxdf(0)1!x1+dx2d2f(0)2!x2+dx3d3f(0)3!x3+......

自然地, e x e^x ex在x=0处的展开是这样的:

e x = ∑ n = 0 ∞ x n n ! e^x={\mathop{ \sum }\limits_{{n=0}}^{{ \infty }}{\frac{{x\mathop{{}}\nolimits^{{n}}}}{{n!}}}} ex=n=0n!xn

并且是对任意x都正确的。

积分

求积分的第一步是寻找原函数,具体参考牛顿莱布尼茨公式。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值