一阶线性微分方程的形式如下:
y ′ + p ( x ) y = q ( x ) y'+p(x)y=q(x) y′+p(x)y=q(x)
对于式子左侧,长得像下式,但不太一样
( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)′=u′v+uv′
y ′ ⋅ 1 + y ⋅ p ( x ) y' ·1+y ·p(x) y′⋅1+y⋅p(x)
这里对应 v v v看似得不到一个合适的,但是借助 [ e f ( x ) ] ′ = e f ( x ) ⋅ f ′ ( x ) [e^{f(x)}]'=e^{f(x)}·f'(x) [ef(x)]′=ef(x)⋅f′(x)可以发现能构造出类似的,即下式
y ′ ⋅ e ∫ p ( x ) d x + y ⋅ e ∫ p ( x ) d x ⋅ p ( x ) y'·e^{\int p(x)dx}+y·e^{\int p(x)dx}·p(x) y′⋅e∫p(x)dx+y⋅e∫p(x)dx⋅p(x)
提出相同系数:
e ∫ p ( x ) d x ⋅ [ y ′ ⋅ 1 + y ⋅ p ( x ) ] e^{\int p(x)dx}·[y'·1+y·p(x)] e∫p(x)dx⋅[y′⋅1+y⋅p(x)]
原式等号右侧增补相同系数可得到式子整体(待化简)
e ∫ p ( x ) d x ⋅ [ y ′ ⋅ 1 + y ⋅ p ( x ) ] = e ∫ p ( x ) d x ⋅ q ( x ) e^{\int p(x)dx}·[y'·1+y·p(x)]=e^{\int p(x)dx}·q(x) e∫p(x)dx⋅[y′⋅1+y⋅p(x)]=e∫p(x)dx⋅q(x)
于是化简得到:
[ y ⋅ e ∫ p ( x ) d x ] ′ = e ∫ p ( x ) d x ⋅ q ( x ) [y·e^{\int p(x)dx}]'=e^{\int p(x)dx}·q(x) [y⋅e∫p(x)dx]′=e∫p(x)dx⋅q(x)
左侧是求导,给积回去,右侧得添积分号:
y ⋅ e ∫ p ( x ) d x = ∫ e ∫ p ( x ) d x ⋅ q ( x ) d x + C y·e^{\int p(x)dx}=\int {e^{\int p(x)dx}·q(x)dx + C} y⋅e∫p(x)dx=∫e∫p(x)dx⋅q(x)dx+C
将y系数化为1得最终结论通解公式:
y = e − ∫ p ( x ) d x ⋅ ∫ e ∫ p ( x ) d x ⋅ q ( x ) d x + C y= e^{-\int p(x)dx}·\int {e^{\int p(x)dx}·q(x)dx + C} y=e−∫p(x)dx⋅∫e∫p(x)dx⋅q(x)dx+C
且通解就是全部解