佩尔方程

佩尔方程

1 定义

  在三角平方数中。我们找到了方程:
x 2 − 2 y 2 = 1 x^2-2y^2=1 x22y2=1
正整数解的完美描述。其实这个方程就是佩尔方程的一个特例。

  佩尔方程是具有形式:
x 2 − D y 2 = 1 x^2-Dy^2=1 x2Dy2=1
的方程,其中 D D D是一个固定的正整数并且不是完全平方数

2 佩尔方程的历史

2.1 阿基米德牛群问题

  佩尔方程有着悠久的历史,它首次被记载在”阿基米德牛群问题“中,下面是这个问题的描述。
  太阳神有一个由公牛和母牛组成的牛群其中一部分是白牛,一部分是黑牛,一部分是花牛,其余的都是棕色的牛。
在公牛中
白牛的数量比棕色的牛多黑牛的二分之一加三分之一;
黑牛的数量比棕色的牛多花牛的四分之一加五分之一;
花牛的数量比棕色的牛多白牛的六分之一加七分之一 。
在母牛中
白牛的数量是所有黑牛的三分之一加四分之一;
黑牛的数量是所有花牛的四分之一加五分之一;
花牛的数量是所有棕色牛的五分之一加六分之一;
棕色的牛的数量是所有白牛的六分之一加七分之一 。
问: 这群牛总共有多少头?各种颜色的牛分别是多少头?

  Bovinum进一步问(简称Bovinum问题):如果白色公牛和黑色公牛放在一起,其数量
刚好是一个完全平方数;把棕色的牛和花牛放在 一 起 ,其数量正好是一个三角数 ,则这群牛共有多少头?

  这个问题吸引了许多专家、数学家的兴趣。经过一系列计算,这一问题最终简化成求解佩尔方程:
x 2 − 4729494 y 2 = 1 x^2-4729494y^2=1 x24729494y2=1
最小解由Amthor最先于1880年确定,其中 y y y含有 41 41 41位数。

2.2 三个重要的历史人物

  时光飞逝,求解佩尔方程的第一个重要进展出现于印度。

  婆罗摩笈多(Brahmagupta,598–670):婆罗摩笈多是同时代印度最著名的数学家之一,他最著名的著作是写于公元628年的《Brahmasphutasiddhanta》(宇宙的开始)。这本非同寻常的书中包含了对形如 x 2 − D y 2 = A x^2-Dy^2=A x2Dy2=A的方程,特别是”佩尔“方程 x 2 − D y 2 = 1 x^2-Dy^2=1 x2Dy2=1的讨论。婆罗摩笈多描述了一种用已知解创造新解的混合方法,他将该方法称为samasa,他还给出了一个(有时)能得到初始解的算法。

  婆什伽罗(Bhaskaracharya,1114–1185):推广了婆罗摩笈多关于佩尔方程的工作,他描述了一个通过对原始近似解反复约化而得到真解的方法。婆什伽罗称自己的方法为chakravala。现在,这种类型的论证被称为”费马递降法“。婆什伽罗通过解 x 2 − 61 y 2 = 1 x^2-61y^2=1 x261y2=1说明了他的方法,这比费马用此方程向他人挑战早了500年。

  布朗克尔(William Brouncker)描述了求解佩尔方程的一般方法,布朗克尔为了说明他的方法的有效性,仅用几个小时就求出方程:
x 2 − 313 y 2 = 1 x^2-313y^2=1 x2313y2=1
的最小平凡解
( 32188120829134849 , 1819380158564160 ) (32188120829134849,1819380158564160) (32188120829134849,1819380158564160)

  沃利斯和费马都断言佩尔方程总是有解的。有趣的是,欧拉错误地认为沃利斯书中的方法属于另一位英国数学家佩尔,并且正是欧拉将这个方程称为我们目前所熟知的”佩尔方程“。这个误解使佩尔获得了不朽的数学名声。为了有利于澄清历史,”佩尔方程“的一个更好的名称应该为” B 3 B^3 B3方程“,以此纪念这三位姓氏以 B B B开头的数学家。

3 佩尔方程定理

  假设我们可以求出佩尔方程
x 2 − D y 2 = 1 x^2-Dy^2=1 x2Dy2=1
的一个解 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),则可以利用三角平方数中对 D = 2 D=2 D=2所描述的同样方法来产生一个新的解。

  将已知解因式分解为:
1 = x 1 2 − D y 1 2 = ( x 1 + y 1 D ) ( x 1 − y 1 D ) 1=x_1^2-Dy_1^2=(x_1+y_1\sqrt D)(x_1-y_1\sqrt D) 1=x12Dy12=(x1+y1D )(x1y1D )
两边同时平方便得到一个新的解:

1 = 1 2 = ( x 1 + y 1 D ) 2 ( x 1 − y 1 D ) 2 = ( ( x 1 2 + y 1 2 D ) + 2 x 1 y 1 D ) ( ( x 1 2 + y 1 2 D ) − 2 x 1 y 1 D ) = ( x 1 2 + y 1 2 D ) 2 − ( 2 x 1 y 1 ) 2 D \begin{aligned} 1=1^2&=(x_1+y_1\sqrt D)^2(x_1-y_1\sqrt D)^2\\ &=((x_1^2+y_1^2D)+2x_1y_1\sqrt D)((x_1^2+y_1^2D)-2x_1y_1\sqrt D)\\ &=(x_1^2+y_1^2D)^2-(2x_1y_1)^2D \end{aligned} 1=12=(x1+y1D )2(x1y1D )2=((x12+y12D)+2x1y1D )((x12+y12D)2x1y1D )=(x12+y12D)2(2x1y1)2D
也就是说:
( x 1 2 + y 1 2 D , 2 x 1 y 1 ) (x_1^2+y_1^2D,2x_1y_1) (x12+y12D,2x1y1)
是一个新解。取 3 , 4 , ⋯ 3,4,\cdots 3,4,次幂可以得到任意多个解。

  不过还有两个很麻烦的问题:

  • 每个佩尔方程都有解吗?
  • 假定每个佩尔方程确实有解,是否每个解都可通过对最小解取幂而得到?

佩尔方程定理回答了这两个问题。

  佩尔方程定理(证明略):设 D D D是一个正整数且不是完全平方数,则佩尔方程:
x 2 − D y 2 = 1 x^2-Dy^2=1 x2Dy2=1
总有正整数解,如果 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)是使 x 1 x_1 x1最小的解,则每个解 ( x k , y k ) (x_k, y_k) (xk,yk)可通过取幂得到:
x k + y k D = ( x 1 + y 1 D ) k , k = 1 , 2 , 3 , ⋯ x_k+y_k\sqrt D=(x_1 + y_1\sqrt D)^k,k=1,2,3,\cdots xk+ykD =(x1+y1D )k,k=1,2,3,

  下图列出了所有 D ≤ 75 D\le 75 D75的佩尔方程的最小解,有趣的是,有时候最小解相当小,有时候最小解有很巨大。关于何时最小解真的很小,何时最小解很大的问题,还没有已知的模式,已经知道方程 x 2 − D y 2 = 1 x^2-Dy^2=1 x2Dy2=1的最小解 ( x , y ) (x,y) (x,y)满足 x < 2 D x\lt 2^D x<2D,但这显然不是一个很好的估计~
在这里插入图片描述

4 参考资料

[1]《数论概论》第四版P167-P170
[2] 王念良, 杨全, 王辉. 关于阿基米德牛群问题及与之有关的Pell方程[J]. 商洛学院学报, 2011(04):5-7.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值