离散数学复习--Modular Arithmetic

Divisibility

Definition

Let x , y ∈ Z x,y\in Z x,yZ with x ≠ 0 x\neq0 x=0
We say that a divides b
a|b, if there exists some k ∈ Z k\in Z kZ such that b = a k b = ak b=ak.

Theorem

Proof Easy

  1. If a ∣ b a|b ab and a ∣ c a|c ac then a ∣ ( b + c ) a|(b+c) a(b+c)
  2. If a ∣ b a|b ab then a ∣ b c a|bc abc
  3. If a ∣ b a|b ab and b ∣ c b|c bc then a ∣ c a|c ac (transitivity)

Corollary

Let a , b , c ∈ Z a, b, c \in Z a,b,cZ. If a|b and a|c, then a|mb+nc for any m , n ∈ Z m, n \in Z m,nZ

Modular Arithmetic

Definition

Let x , y ∈ Z x,y\in Z x,yZ, m ∈ N + m\in N^{+} mN+

we say x is congruent to y modulo m

x ≡ y ( m o d m ) x\equiv y\pmod m xy(modm) if and only if m ∣ ( x − y ) m|(x-y) m(xy)

Notation: x ≡ y ( m o d m ) x\equiv y\pmod m xy(modm) or m o d ( x , m ) mod(x,m) mod(x,m)

Claim

x ≡ y ( m o d m ) x\equiv y\pmod m xy(modm) if and only if x x x and y y y have the same remainder when divided by m (Proof easy)

29 (mod 12) ≡ 5

13 (mod 5) ≡ 3.

Lemma

if a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm), c ≡ d ( m o d m ) c\equiv d\pmod m cd(modm),then

  1. a + c ≡ b + d ( m o d m ) a+c\equiv b+d\pmod m a+cb+d(modm)

  2. a c ≡ b d ( m o d m ) ac\equiv bd\pmod m acbd(modm)

Solution:

  1. a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm) and c ≡ d ( m o d m ) c\equiv d\pmod m cd(modm)

⇒ m ∣ ( a − b ) \Rightarrow m|(a-b) m(ab) and m ∣ ( c − d ) m|(c-d) m(cd)

⇒ m ∣ ( a − b + c − d ) \Rightarrow m|(a-b+c-d) m(ab+cd)

⇒ m ∣ ( a + c − ( b + d ) ) \Rightarrow m|(a+c-(b+d)) m(a+c(b+d))

⇒ a + c ≡ b + d ( m o d m ) \Rightarrow a+c\equiv b+d\pmod m a+cb+d(modm)

  1. m ∣ ( a − b ) m|(a-b) m(ab) and m ∣ ( c − d ) m|(c-d) m(cd)

⇒ m ∣ a c − b c \Rightarrow m|ac-bc macbc and m ∣ b c − b d m|bc-bd mbcbd

⇒ m ∣ a c − b d \Rightarrow m|ac-bd macbd

⇒ a c ≡ b d ( m o d m ) \Rightarrow ac\equiv bd \pmod m acbd(modm)

Theorem

  1. If d ∣ x d|x dx and d ∣ y d|y dy, then d ∣ m o d ( x , y ) d|mod(x,y) dmod(x,y)

    Proof:

    m o d ( x , y ) ⇒ y ∣ x − m o d ( x , y ) mod(x,y)\Rightarrow y|x-mod(x,y) mod(x,y)yxmod(x,y)

    ∵ d ∣ y \because d|y dy

    ∴ d ∣ x − m o d ( x , y ) \therefore d|x-mod(x,y) dxmod(x,y)

    ∴ d ∣ m o d ( x , y ) \therefore d|mod(x,y) dmod(x,y)

  2. If d ∣ y d|y dy and d ∣ m o d ( x , y ) d|mod(x,y) dmod(x,y), then d ∣ x d|x dx

    Similar

  3. GCD Mod Corollary: g c d ( x , y ) = g c d ( y , m o d ( x , y ) ) gcd(x,y)=gcd(y,mod(x,y)) gcd(x,y)=gcd(y,mod(x,y))

    x and y have same set of common divisors as x and mod (x,y) by Lemma.

    Same common divisors ⇒ \Rightarrow largest is the same.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值