题目描述
一棵树的构造过程为:首先以1号点为根,然后依次加入2~n号点。
加入i号点时,在1~i-1点中选择一个点为f[i],将i号点与其相连接。
Yuri想要求出,每次加点之后路上的最长路径长度。
输入格式
第一行一个整数n,表示树的节点个数。
第二行n-1个整数,第i个整数表示f[i+1]。
输出格式
一行n-1个整数,分别表示加完2~n号点后,树上最长路径的长度。
样例输入
6
1 2 2 1 5
样例输出
1 2 2 3 4
数据范围
对于前10%的数据,n<=200.
对于前40%的数据,n<=2000.
对于100%的数据,n<=200000
思路
- 倍增Lca
- 某个结论
结论
经过实验,一定会有则个结论:
若现在树上最远两点是a,b(即树的直径的两端)
那么新加入c点后,新的直径只有可能在ab,ac,bc中产生;
所以每加一次点就比较三个距离,更新最大值.
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
int f[200010][18],d[200010],n;
inline void link(int p,int x){
f[x][0]=p; d[x]=d[p]+1;
for(int i=1;i<18;++i) f[x][i]=f[f[x][i-1]][i-1];
}
inline void swim(int& x,int d){
for(int i=0;d;++i,d>>=1) if(d&1) x=f[x][i];
}
inline int gLca(int x,int y){
if(d[x]>d[y]) swap(x,y);
swim(y,d[y]-d[x]);
if(x==y) return x;
for(int j=17;;){
for(;~j&&f[x][j]==f[y][j];--j);
if(j<0) return f[x][0];
x=f[x][j]; y=f[y][j];
}
}
int main(){
freopen("path.in","r",stdin);
freopen("path.out","w",stdout);
d[2]=d[3]=d[4]=1; *f[1]=0;
f[2][0]=f[3][0]=f[4][0]=1;
int t;
scanf("%d",&n); int x=1,y=2,r=1;t=2;n--;
scanf("%d",&x);
printf("1 ");
for(int i=1;i<n;++i){
int p,c;
scanf("%d",&c);
link(c,++t);
p=gLca(x,t);
if(d[x]+d[t]-2*d[p]>r){ r=d[x]+d[t]-2*d[p]; y=t; }
p=gLca(y,t);
if(d[y]+d[t]-2*d[p]>r){ r=d[y]+d[t]-2*d[p]; x=t; }
printf("%d ",r);
}
}
类似的还有一道题Jzoj3555