AtCoder2693 Transit Tree Path题解(树上路径)

Problem Statement

You are given a tree with N vertices.Here, a tree is a kind of graph, and more specifically, a connected undirected graph with N−1 edges, where N is the number of itsvertices.The i-th edge (1≤i≤N−1) connects Vertices ai and bi, and has a length of ci.You are also given Q queries and an integer K. In the j-th query (1≤j≤Q):find the length of the shortest path from Vertex xj and Vertex yj via Vertex K.

Constraints

3≤N≤105
1≤ai,bi≤N(1≤i≤N−1)
1≤ci≤109(1≤i≤N−1)
The given graph is a tree.
1≤Q≤105
1≤K≤N
1≤xj,yj≤N(1≤j≤Q)
xj≠yj(1≤j≤Q)
xj≠K,yj≠K(1≤j≤Q)

Input is given from Standard Input in the following format:

N
a1 b1 c1
:
aN−1 bN−1 cN−1
Q K
x1 y1
:
xQ yQ

Output

Print the responses to the queries in Q lines.
In the j-th line j(1≤j≤Q), print the response to the j-th query.

Sample Input 1
5
1 2 1
1 3 1
2 4 1
3 5 1
3 1
2 4
2 3
4 5
Sample Output 1
3
2
4
The shortest paths for the three queries are as follows:

  • Query 1: Vertex 2 → Vertex 1 → Vertex 2 → Vertex 4 : Length 1+1+1=3
  • Query 2: Vertex 2 → Vertex 1 → Vertex 3 : Length 1+1=2
  • Query 3: Vertex 4 → Vertex 2 → Vertex 1 → Vertex 3 → Vertex 5 : Length 1+1+1+1=4

Sample Input 2
7
1 2 1
1 3 3
1 4 5
1 5 7
1 6 9
1 7 11
3 2
1 3
4 5
6 7
Sample Output 2
5
14
22
Sample Input 3
10
1 2 1000000000
2 3 1000000000
3 4 1000000000
4 5 1000000000
5 6 1000000000
6 7 1000000000
7 8 1000000000
8 9 1000000000
9 10 1000000000
1 1
9 10
Sample Output 3
17000000000

简述题意

给出一棵有N个结点的树,给出Q个询问,求结点xj过结点K到节点yj的最短距离

题解:

本题很好的利用了树的性质,每两个节点最多只存在一条边,于是很容易得想到所有点之间都只有一条唯一的最短路径,那我们如何保证两点之间过点K呢,其实不难想到,只要将K点作为根节点就好了,找出到两点的距离相加即为最短距离
标程:

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+50,maxm=2e5+100;
long long d[maxn];
int head[maxn];
int size=0;
struct edge
{
	int to,next;
	long long val;
}e[maxn];
void addedge(int u,int v,long long w)
{
	e[++size].to=v;
	e[size].val=w;
	e[size].next=head[u];
	head[u]=size;
}
inline int read()
{
	int x=0,f=1;char ch=getchar();
	while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
	while(ch<='9'&&ch>='0'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
	return x*f;
}
void dfs(int u,int fa)
{
	for(int i=head[u];i;i=e[i].next)
	{
		int to=e[i].to;
		if(to==fa)continue;
		d[to]=d[u]+e[i].val;
		dfs(to,u);
	}
}
int main()
{
	int n=read();
	for(int i=1;i<n;i++)
	{
		int u=read(),v=read();
		long long w=read();
		addedge(u,v,w);
		addedge(v,u,w);	
	}
	int q=read(),k=read();
	dfs(k,0);
	for(int i=1;i<=q;i++)
	{
		int x=read(),y=read();
		printf("%lld\n",d[x]+d[y]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值