Problem Statement
You are given a tree with N vertices.Here, a tree is a kind of graph, and more specifically, a connected undirected graph with N−1 edges, where N is the number of itsvertices.The i-th edge (1≤i≤N−1) connects Vertices ai and bi, and has a length of ci.You are also given Q queries and an integer K. In the j-th query (1≤j≤Q):find the length of the shortest path from Vertex xj and Vertex yj via Vertex K.
Constraints
3≤N≤105
1≤ai,bi≤N(1≤i≤N−1)
1≤ci≤109(1≤i≤N−1)
The given graph is a tree.
1≤Q≤105
1≤K≤N
1≤xj,yj≤N(1≤j≤Q)
xj≠yj(1≤j≤Q)
xj≠K,yj≠K(1≤j≤Q)
Input is given from Standard Input in the following format:
N
a1 b1 c1
:
aN−1 bN−1 cN−1
Q K
x1 y1
:
xQ yQ
Output
Print the responses to the queries in Q lines.
In the j-th line j(1≤j≤Q), print the response to the j-th query.
Sample Input 1
5
1 2 1
1 3 1
2 4 1
3 5 1
3 1
2 4
2 3
4 5
Sample Output 1
3
2
4
The shortest paths for the three queries are as follows:
- Query 1: Vertex 2 → Vertex 1 → Vertex 2 → Vertex 4 : Length 1+1+1=3
- Query 2: Vertex 2 → Vertex 1 → Vertex 3 : Length 1+1=2
- Query 3: Vertex 4 → Vertex 2 → Vertex 1 → Vertex 3 → Vertex 5 : Length 1+1+1+1=4
Sample Input 2
7
1 2 1
1 3 3
1 4 5
1 5 7
1 6 9
1 7 11
3 2
1 3
4 5
6 7
Sample Output 2
5
14
22
Sample Input 3
10
1 2 1000000000
2 3 1000000000
3 4 1000000000
4 5 1000000000
5 6 1000000000
6 7 1000000000
7 8 1000000000
8 9 1000000000
9 10 1000000000
1 1
9 10
Sample Output 3
17000000000
简述题意
给出一棵有N个结点的树,给出Q个询问,求结点xj过结点K到节点yj的最短距离
题解:
本题很好的利用了树的性质,每两个节点最多只存在一条边,于是很容易得想到所有点之间都只有一条唯一的最短路径,那我们如何保证两点之间过点K呢,其实不难想到,只要将K点作为根节点就好了,找出到两点的距离相加即为最短距离
标程:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+50,maxm=2e5+100;
long long d[maxn];
int head[maxn];
int size=0;
struct edge
{
int to,next;
long long val;
}e[maxn];
void addedge(int u,int v,long long w)
{
e[++size].to=v;
e[size].val=w;
e[size].next=head[u];
head[u]=size;
}
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
void dfs(int u,int fa)
{
for(int i=head[u];i;i=e[i].next)
{
int to=e[i].to;
if(to==fa)continue;
d[to]=d[u]+e[i].val;
dfs(to,u);
}
}
int main()
{
int n=read();
for(int i=1;i<n;i++)
{
int u=read(),v=read();
long long w=read();
addedge(u,v,w);
addedge(v,u,w);
}
int q=read(),k=read();
dfs(k,0);
for(int i=1;i<=q;i++)
{
int x=read(),y=read();
printf("%lld\n",d[x]+d[y]);
}
return 0;
}