Contrastive Learning(对比学习,MoCo,SimCLR,BYOL,SimSiam,SimCSE)

在这里插入图片描述

很多大佬认为,深度学习的本质就是做两件事情:Representation Learning(表示学习)和 Inductive Bias Learning(归纳偏好学习)。在表示学习方面,如果直接对语义进行监督学习,虽然表现很好,但是它需要很多的样本并且往往是需要对特定的任务进行设计,很难具有迁移性。所以难怪各位大佬们都纷纷为自监督学习站台,自监督是未来!

自监督学习有大类方法,一个是生成方法一个对比方法,如上图。生成方法往往会对像素级损失进行约束,关于这一类博主已经在前一篇文章整理了传送门:视觉无监督学习,而对比学习在表示学习上做的事情就是:

  • 其实模型不必要知道关于特征的细节,只要学到的特征足矣使其和其他样本区别开来就行。

Contrastive loss
对比损失Contrastive loss,简单的解释就是,利用对比正-负样本来学习表示。学习的目的为
s c o r e ( f ( x ) , f ( x + ) ) > > s c o r e ( f ( x ) , f ( x − ) ) score(f(x),f(x^{+}))>>score(f(x),f(x^{-})) score(f(x),f(x+))>>score(f(x),f(x))
这里x+是与x相似或相等的数据点,称为正样本。x−是与x不同的数据点,称为负样本。score函数是一个度量两个特征之间相似性的指标,直接算内积来表示:
s c o r e ( f ( x ) , f ( x + ) ) = f ( x ) T f ( x + ) score(f(x),f(x^{+}))=f(x)^T f(x^{+}) score(f(x),f(x+))=f(x)Tf(x+)
然后尝试优化以下期望,即让正例样本越相似,要负例样本越远就好。
E [ − l o g e f ( x ) T f ( x + ) e f ( x ) T f ( x + ) + e f ( x ) T f ( x − ) ] E[-log \frac{e^{f(x)^Tf(x^+)}}{e^{f(x)^Tf(x^+)}+e^{f(x)^Tf(x^-)}}] E[logef(x)Tf(x+)+ef(x)Tf(x)ef(x)Tf(x+)]

其实这个叫法最初似乎出自Yann LeCun “Dimensionality Reduction by Learning an Invariant Mapping”,本来是用于处理在降维空间中正样本和负样本之间的相似/不相似的远近距离关系,式子为: L = 1 2 N ∑ n = 1 N y d 2 + ( 1 − y ) m a x ( m a r g i n − d , 0 ) 2 L=\frac{1}{2N}\sum_{n=1}^Nyd^2+(1-y)max(margin-d,0)^2 L=2N1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值