Meta-learning(元学习与少样本学习)

Meta-learning(元学习)

虽然目前很多暴力堆算力堆数据的模型取得了很好的效果,但由于有些数据很难收集到,或者大量的标注耗费人力太多,关于元学习的研究也很多。特别是比如人类往往只需要通过少量数据就能做到快速学习,甚至不需要数据仅仅凭概念就可以完成推理。这种能力基本就属于元学习的范畴,或者机器学习领域中的zero-shot,few-shot learning了,首先看看概念:

  • Meta-learning,元学习。学习怎么去学习。所谓“元”对应着人类在幼儿时期就掌握的对世界的基础知识和行为模式的理解,即一个泛化性强的初始网络,再加上一个对新任务快速适应的学习能力。所以元学习的目标就表现在提高泛化能力,获得好的参数,通过少量计算就可以实现比较好的效果。

元学习目前主要针对小样本学习问题,原学习的训练和测试都以少样本任务为基本单元,每个任务拥有个自己的训练数据集和测试数据集,也成为支持集和查询集,它在训练和测试阶段都只使用小样本数据。

  • Zore-shot learning,零样本学习。支持集为训练集,其为带标签的seen classes,查询集为测试集即unseen classes,零样本学习将识别与每个没见过的类在语义上与见过的类之间的相关知识。也就是,如果我们知道马长什么样子,知道斑马长得像马且有条纹,那么我们就算没见过也可以识别出斑马。
  • One-shot learning,一样本学习。即当新未见过的类别只有一个的样本时,希望模型可以通过已经学习到的旧类别去预测新类别。此时的meta-learing就不是想传统监督学习那样,为了总结某个类的分布中存在的共享信息和模式,而是试图学习存在于任务分布上的规
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值