小样本学习(FSL)和元学习、数据增强和对比学习各自的概念和相互关系

前言

最近一周在做简历和投递,想找个暑假的实习岗,有几个过了初筛,今天围绕我的简历讲解一下里面的科研经历和方向推荐,也是给自己做一个总结。
去年疫情开始,取消线下课程和考试,我闲着没事,就搞起了研究,很巧的是和ChatGPT时间重叠了,当时因为网上全是防治疾病的,我也就错过了ChatGPT的黄金期,不然没准就是搞NLP了,今天我也请GPT4.0一同创作,看能不能给这篇博客带来不一样的火花。

小样本学习 Few-shot Learning

综述:

小样本学习(Few-shot Learning)是机器学习领域的一个子领域,它的目标是让模型能够在仅接触到少量训练样本的情况下,快速学习并适应新任务。在现实生活中,许多任务可能难以收集大量标签化数据。因此,小样本学习的研究具有很高的实用价值。

小样本学习的核心思想是利用已有的知识来学习新任务。目前,主要有三种方法实现小样本学习:
1、元学习(Meta-learning):元学习是指让模型学会学习的过程。通过在大量任务上进行训练,模型可以学会如何在新任务上快速适应。常见的元学习方法有MAML(Model-Agnostic Meta-Learning)、Reptile等。

2、预训练和微调(Pre-training and Fine-tuning):这种方法首先在大量无标签数据上进行预训练,以让模型学习通用的表示。然后,在特定任务的小样本数据上进行微调。预训练和微调方法已经在自然语言处理和计算机视觉领域取得了很好的效果,例如GPT和BERT等模型。

3、记忆模块(Memory-augmented Models):这种方法为模型引入外部记忆单元,以便在学习新任务时能够更好地利用已有知识。神经图灵机(Neural Turing Machine)和记忆网络(Memory Networks)就是典型的例子。

值得注意的是,小样本学习并不是孤立的,很多时候它与迁移学习、增强学习等技术结合在一起,实现模型在新任务上的快速学习和适应。在实际应用中,选择合适的小样本学习方法需要根据具体任务和场景来决定。

看到这里可能有人会想,不就是训练样本数少嘛,LLM是堆数据和模型参数,小样本就是减少训练数据量,还有其他的特点吗?

确实,从字面上理解,小样本学习仅仅是减少训练数据量的问题。但实际上,小样本学习研究的是在数据稀缺的情况下,如何让模型能够快速学习并泛化到新任务的问题。因此,小样本学习的关键在于解决数据不足带来的挑战&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SoupV7

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值