Few-shot learning(少样本学习)和 Meta-learning(元学习)概述

(一)Few-shot learning(少样本学习)

1. 问题定义

众所周知,现在的主流的传统深度学习技术需要大量的数据来训练一个好的模型。例如典型的 MNIST 分类问题,一共有 10 个类,训练集一共有 6000 个样本,平均下来每个类大约 600 个样本,但是我们想一下我们人类自己,我们区分 0 到 9 的数字图片的时候需要看 6000 张图片才知道怎么区分吗?很显然,不需要!这表明当前的深度学习技术和我们人类智能差距还是很大的,要想弥补这一差距,少样本学习是一个很关键的问题。另外还有一个重要原因是如果想要构建新的数据集,还是举分类数据集为例,我们需要标记大量的数据,但是有的时候标记数据集需要某些领域的专家(例如医学图像的标记),这费时又费力,因此如果我们可以解决少样本学习问题,只需要每个类标记几张图片就可以高准确率的给剩余大量图片自动标记。这两方面的原因都让少样本学习问题很吸引人。

在 few-shot learning 中有一个术语叫做 N N N-way K K K-shot 问题,简单的说就是我们需要分类的样本属于 N N N 个类中一种,但是我们每个类训练集中的样本只有 K K K 个,即一共只有 N ∗ K N * K

评论 55
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值