初始视觉里程计

本文讲述了作者在大四毕业设计中接触视觉里程计的过程,从对SLAM技术的迷茫,到尝试运行 mono VO 和ORB_SLAM2程序的挫折,再到找到学习资源,逐渐深入理解这一领域的经历。作者希望通过分享自己的学习历程,鼓励同样困惑的同行一起探讨视觉SLAM技术。
摘要由CSDN通过智能技术生成

起因

临近大四的时候,被告知毕业设计要做与机器人相关的题目。于是导师给了一个足球场上实现移动机器人视觉自定位的功能。拿到这个题目,万般无奈,毫无头绪,身边的人也没有搞过这个的,根本不知道这个东西到底是个啥。查看了很多很多文章,都是很多的理论性的东西,对于想实现但基本零基础的我来说真的是毫无用处,于是到处加了QQ群也没人搭理,又在博客上到处留言也无果。当时真的是很绝望,一次又一次的起不了步。

在万般无奈后,打算先整一个程序来跑一跑可能要好一点,在CSDN和github到处搜索,懵懵懂懂的了解到一些什么SVO,Mono,SLAM,OpenCV,Qt等词汇。也下载了好几个程序就是跑不出来,最后在博客上看到 单目视觉里程计mono vo 看效果很不错的样子,然后就激动的就先做了一个Ubuntu系统,在Git上下载了代码,按照超级简单的README,不出意料,编译啥的到处都是错。跑别人的程序就是这样,系统环境不一样,各种依赖的库文件,出现了error也没有能力去解决,只能到处搜问题找答案,能解决就解决,不能解决也就只能那样,于是又陷入了无奈的无奈。

开始入坑

我也看了冯兵的博客 ,跟着做了一点,发现也是到处都是错,也没人帮忙。 后来消沉了一段时间后,遇到一个大神告知我去跑视觉ORB_SLAM2 的程序看看,感觉又有了希望,赶紧看了看。

SLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and Localization), 即时定位与地图构建,或并发建图与定位。问题可以描述为:将一个机器人放入未知环境中的未知位置,是否有办法让机器人一边逐步描绘出此环境完全的地图,所谓完全的地图(a consistent map)是指不受障碍行进到房间可进入的每个角落。机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和地图进行自身定位,同时在自身定位的基础上建造增量式地图,实现机器人的自主定位和导航。

再漂亮的数学理论,如果不能转化为可以运行的代码,那就仍是可望而不可即的空中楼阁。接下来我便要开始来跑跑这个程序了,程序跑出了之后再去看理论,理论知识不可少,大神告诉我清华博士高翔的 这本书也是必看的书视觉SLAM十四讲 。在实验室找到了这本书,有点小激动,心里有点底了,之后我会记录一些跑这个程序的点滴。不知有没有也处于困惑无奈困惑无奈循环不出的朋友,我们可以共同探讨一下。

人生就是这样,你永远不会知道你目前所经历的,会不会成为你日后成功的基石

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值