3D GAN:Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

论文地址

一.Abstract

1.提出了一个新的框架,即3D生成对抗网络(3D- gan),它利用体卷积网络和生成对抗网络的最新进展,从概率空间生成三维对象.
2.首先,使用对抗准则代替传统的启发式准则,使生成器能够隐式地捕获对象结构,并同步大小相同的高质量3D对象.
3.生成器G建立了一个从低维概率空间到三维对象空间的映射,使我们可以在没有参考图像或CAD模型的情况下对对象进行采样,并探索三维对象流形.
4.对抗识别器提供了一种强大的三维形状描述,无需监督即可学习,在三维物体识别中有着广泛的应用

二.Introduction

1.传统方法都是从CAD库中寻找组件生成新的物体,因此生成的很真实却不新颖
2.作者的方法对于三维对象建模来说可能是一个特别有利的框架:由于三维对象是高度结构化的,一个生成对抗准则,而不是一个体素独立的启发式准则,有可能捕获两个三维对象的结构差异(GAN的特点,整个数据集放入D网络)。使用生成对抗损失还可以避免可能依赖准则的过度拟合

1.GAN是基于图像整体作为loss学的是整个数据集的分布函数
2.基于范数的方法目标函数是基于单个像素点操作,约束了物体的轮廓,而GAN对图像整体作为约束并没有对物体轮廓进行约束。

3.以生成的方式建模3D对象提供了额外的独特优势。首先&

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值