论文地址
一.Abstract
1.提出了一个新的框架,即3D生成对抗网络(3D- gan),它利用体卷积网络和生成对抗网络的最新进展,从概率空间生成三维对象.
2.首先,使用对抗准则代替传统的启发式准则,使生成器能够隐式地捕获对象结构,并同步大小相同的高质量3D对象.
3.生成器G建立了一个从低维概率空间到三维对象空间的映射,使我们可以在没有参考图像或CAD模型的情况下对对象进行采样,并探索三维对象流形.
4.对抗识别器提供了一种强大的三维形状描述,无需监督即可学习,在三维物体识别中有着广泛的应用
二.Introduction
1.传统方法都是从CAD库中寻找组件生成新的物体,因此生成的很真实却不新颖
2.作者的方法对于三维对象建模来说可能是一个特别有利的框架:由于三维对象是高度结构化的,一个生成对抗准则,而不是一个体素独立的启发式准则,有可能捕获两个三维对象的结构差异(GAN的特点,整个数据集放入D网络)。使用生成对抗损失还可以避免可能依赖准则的过度拟合
1.GAN是基于图像整体作为loss学的是整个数据集的分布函数
2.基于范数的方法目标函数是基于单个像素点操作,约束了物体的轮廓,而GAN对图像整体作为约束并没有对物体轮廓进行约束。
3.以生成的方式建模3D对象提供了额外的独特优势。首先&