YOLOv8 分类模型用 onnx 推理的前处理

Mofify Date: 2024-07-07

场景描述

跟随 YOLOv8 推出的是 ultralytics 训练和推理框架,可以一行代码实现分类、检测、分割等任务的训练,以及推理和模型导出。

发现在使用默认设置训练分类模型,并使用 ultralytics 库将模型 pt 权重一键导出为 onnx 后,如果不使用 ultralytics 加载 onnx 权重,而直接在其他没有 ultralytics 的环境和设备上用 onnxruntime 直接加载权重并推理,会出现推理结果不一致甚至置信度很低的情况。这是缺少 pt 权重文件所能表达的前处理信息,没有实现前处理而导致的。需要补充 YOLOv8 自带的前处理。


解决方案

可以通过对 pt 文件的前处理部分解析,或者对 ultralytics 库中 YOLO 分类任务的预测部分代码的源码解析(ultralytics/models/yolo/classify/predict.py),找到前处理的代码,补充到 onnxruntime 推理代码之前即可:

import torchvision.transforms as T
from torchvision.transforms import InterpolationMode

def get_classify_transforms(size: int=224, mean: Tuple[float, float, float]=(0.0, 0.0, 0.0),
                            std: Tuple[float, float, float]=(1.0, 1.0, 1.0),
                            interpolation: InterpolationMode=InterpolationMode.BILINEAR,
                            crop_fraction: float = 1.0) -> T.Compose:
    """
    复现 YOLO 默认的分类预处理
    """
    if isinstance(size, (tuple, list)):
        assert len(size) == 2
        scale_size = tuple(math.floor(x / crop_fraction) for x 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值