1. 问题描述:
给你一个数组 nums 和一个整数 target 。请你返回非空不重叠子数组的最大数目,且每个子数组中数字和都为 target 。
示例 1:
输入:nums = [1,1,1,1,1], target = 2
输出:2
解释:总共有 2 个不重叠子数组(加粗数字表示) [1,1,1,1,1] ,它们的和为目标值 2 。
示例 2:
输入:nums = [-1,3,5,1,4,2,-9], target = 6
输出:2
解释:总共有 3 个子数组和为 6 。
([5,1], [4,2], [3,5,1,4,2,-9]) 但只有前 2 个是不重叠的。
示例 3:
输入:nums = [-2,6,6,3,5,4,1,2,8], target = 10
输出:3
示例 4:
输入:nums = [0,0,0], target = 0
输出:3
提示:
1 <= nums.length <= 10 ^ 5
-10 ^ 4 <= nums[i] <= 10 ^ 4
0 <= target <= 10 ^ 6
来源:https://leetcode-cn.com/problems/maximum-number-of-non-overlapping-subarrays-with-sum-equals-target/
2. 思路分析:
① 由题可知我们需要求解区间和为target的所有不重叠子数组的数目,所以这是一个区间和的问题,对于区间和的问题我们首先想到的是前缀和的方法,因为前缀和只需要遍历一遍数组就可以知道某个区间的累加和,所以比较容易想到的是我们从数组最开始的位置开始遍历找到一个区间和为target的区间,然后再找下一个区间和为target的区间...直到数组的最末尾。
② 基于上面的前缀和的想法,我们可以先累加到数组当前位置的和,也就是从数组索引为0的位置到当前索引为k的位置的和,我们其实不用先遍历一遍数组求出所有位置的前缀和,这里可以使用字典的方式存储之前已经计算过的前缀和,其实这也是一个优化,我们只需要检查字典中是否存在从0到当前位置的和减去target的值,如果存在说明[j,k]区间和为target。
|__________|
0 k
|____|
0 j
所以每计算一次前缀和都需要将前缀和存到字典中这样下一次就可以直接在字典中查询是否存在即可。sum(arr[0,k]) - sum(arr[0,j]) = target说明区间sum(arr[j,k])和为target,然后我们以同样的方法找下一个和为target的区间,所以使用两层循环就可以解决,第一层循环表示从当前位置开始寻找,第二层循环表示从当前位置找和为target的区间。
③ 这道题目类似于力扣560题,可以结合起来理解。
3. 代码如下:
from typing import List
class Solution:
def maxNonOverlapping(self, nums: List[int], target: int) -> int:
s = 0
i, n = 0, len(nums)
res = 0
while i < n:
dic = dict()
# 边界
dic[0] = 1
j, s = i, 0
while j < n:
# 这里可以边遍历边计算前缀和
s += nums[j]
if s - target in dic:
res += 1
break
else:
dic[s] = 1
j += 1
i = j + 1
return res