1335 工作计划的最低难度(动态规划)

1. 问题描述:

你需要制定一份 d 天的工作计划表。工作之间存在依赖,要想执行第 i 项工作,你必须完成全部 j 项工作( 0 <= j < i)。你每天至少需要完成一项任务。工作计划的总难度是这 d 天每一天的难度之和,而一天的工作难度是当天应该完成工作的最大难度。给你一个整数数组 jobDifficulty 和一个整数 d,分别代表工作难度和需要计划的天数。第 i 项工作的难度是 jobDifficulty[i]。返回整个工作计划的最小难度 。如果无法制定工作计划,则返回 -1 。

示例 1:

输入:jobDifficulty = [6,5,4,3,2,1], d = 2
输出:7
解释:第一天,您可以完成前 5 项工作,总难度 = 6.
第二天,您可以完成最后一项工作,总难度 = 1.
计划表的难度 = 6 + 1 = 7 

示例 2:

输入:jobDifficulty = [9,9,9], d = 4
输出:-1
解释:就算你每天完成一项工作,仍然有一天是空闲的,你无法制定一份能够满足既定工作时间的计划表。

示例 3:

输入:jobDifficulty = [1,1,1], d = 3
输出:3
解释:工作计划为每天一项工作,总难度为 3 。

示例 4:

输入:jobDifficulty = [7,1,7,1,7,1], d = 3
输出:15

示例 5:

输入:jobDifficulty = [11,111,22,222,33,333,44,444], d = 6
输出:843

提示:

1 <= jobDifficulty.length <= 300
0 <= jobDifficulty[i] <= 1000
1 <= d <= 10

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-difficulty-of-a-job-schedule

2. 思路分析:

① 分析题目可以知道存在两个限制条件,第一个限制条件是必须在d天之内完成,第二个限制条件是整个工作计划的难度最小,而且注意到一点是一天的工作难度是当天应该完成工作的最大难度,根据这些信息想到应该使用动态规划去解决:我们不知道怎么样去安排每一天的工作计划使得同时满足上面的两个限制条件的(所以需要尝试很多的组合才知道最优的方案),所以应该使用动态规划的思路逐步递推从而得到最终的答案(最佳方案)。由题目可以知道题目存在两个参数分别是天数与完成工作的数目,所以我们应该定义一个二维列表dp,并且我们需要明确dp列表表示的含义这样才可以由小范围的dp列表的值推导出更大范围的dp列表的值,分析题目可以知道dp[i][j]表示在第i天完成j项工作的最小工作计划难度,明确了dp列表的含义之后接下来就是怎么样递推了,我们可以这样想:先推导第一天完成1-n(n表示jobDifficulty数组的长度)项工作的最小工作难度,然后根据第一天的完成的工作情况推导出第二天完成2-n项工作的最小工作难度(每天必须完成一项工作所以第二天必须完成2项工作)...我们在计算当前天数对应的最小工作难度的时候需要尝试不同的情况:

dp[i][j]

a:首先前一天完成j - 1项工作,然后当前这一天完成一项工作那么就可以得到这一天完成j项工作的当前最小工作难度

b:然后尝试其他的情况,因为有可能前一天完成更少的工作,剩余的工作给当前这一天完成得到的最小工作难度会更小,所以我们需要尝试前一天完成j - 2项工作,然后当前这一天完成2项工作,然后前一天j - 3,当前这一天3项工作...一直到前一天完成i - 1项工作,当前这一天完成j - i + 1项工作的时候就可以尝试完当前这一天完成j项工作的所有情况了,所以感觉动态规划有点像优化的暴力破解,尝试所有的情况找出最优的那个方案

很明显我们我们可以根据前一天完成的工作的情况来推导出当前这一天完成的工作的情况,其实也好理解由前一天的最优推导出当前这一天完成j项工作最优的情况...这样就可以一直推导出d天完成n个任务的最小工作难度了,每一步是最优的推导到最后肯定是最优的

② 基于①的想法我们可以先定义两个循环,第一层循环表示天数,第二层循环表示当前这一天完成的工作的数目,然后使用一层额外的循环来求解出dp[i][i]的最小值,前一天完成k项工作,那么最后一天完成j - k项工作,尝试前一天与当前这一天所有可能完成工作的情况计算出最后的dp[i][j]

其中主要如何确定第三层循环求解最优dp[i][j]时候的下标范围,我们一开始是前一天完成j - 1项工作,当前这一天完成1项工作,所以接下来的循环是尝试前一天完成j - 2项工作,但是到什么位置截止呢?可以知道前一天必须要完成i - 1项工作的,所以我们在逆序遍历的情况下下标到 i -2,逆序遍历的目的是从后面更好往前计算出当前到当前位置的最大工作难度,这样更方便对两部分工作难度加起来

3. 代码如下:

from typing import List


class Solution:
    def minDifficulty(self, jobDifficulty: List[int], d: int) -> int:
        n = len(jobDifficulty)
        # 不可能在d天之内完成当前的任务
        if n < d: return -1
        dp = [[-1] * (n + 1) for i in range(d + 1)]
        dp[1][1] = jobDifficulty[0]
        for i in range(2, n + 1):
            dp[1][i] = max(dp[1][i - 1], jobDifficulty[i - 1])
        for i in range(2, d + 1):
            for j in range(i, n + 1):
                dp[i][j] = dp[i - 1][j - 1] + jobDifficulty[j - 1]
                work = jobDifficulty[j - 1]
                # 尝试前一天完成k工作, 后一天完成j - k项工作从而求解最小的dp[i][j]
                for k in range(j - 2, i - 2, -1):
                    work = max(work, jobDifficulty[k])
                    if dp[i - 1][k] + work < dp[i][j]:
                        dp[i][j] = dp[i - 1][k] + work
        return dp[d][n]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值