1. 问题描述:
给定一个字符串 s,计算具有相同数量 0 和 1 的非空(连续)子字符串的数量,并且这些子字符串中的所有 0 和所有 1 都是连续的。重复出现的子串要计算它们出现的次数。
示例 1 :
输入: "00110011"
输出: 6
解释: 有6个子串具有相同数量的连续1和0:“0011”,“01”,“1100”,“10”,“0011” 和 “01”。
请注意,一些重复出现的子串要计算它们出现的次数。
另外,“00110011”不是有效的子串,因为所有的0(和1)没有组合在一起。
示例 2 :
输入: "10101"
输出: 4
解释: 有4个子串:“10”,“01”,“10”,“01”,它们具有相同数量的连续1和0。
提示:
s.length 在1到50,000之间。
s 只包含“0”或“1”字符。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-binary-substrings
2. 思路分析:
分析题目可以知道符合要求的串需要满足0和1的数目是相等的,并且0和1的必须是交替出现的,也即左边全为1并且右边全为0,或者是左边全为0右边全为1,我们可以使用双指针算法先计算出连续相等的1或者0的子串的分界点,也即连续相等的1或者0的子串的长度,相邻两段0和1的子串就是交替出现的,所以相邻两段符合要求的子串的数目为相邻两段长度的最小值,我们可以求解出所有相邻两段长度的最小值累加到结果中即可,在求解的时候可以借助last变量来存储上一段的长度。
3. 代码如下:
class Solution:
def countBinarySubstrings(self, s: str) -> int:
last = 0
i = 0
res = 0
while i < len(s):
j = i + 1
while j < len(s) and s[i] == s[j]: j += 1
cur = j - i
res += min(cur, last)
last = cur
i = j
return res