1. 问题描述:
给定一个正整数数组 nums和整数 k 。请找出该数组内乘积小于 k 的连续的子数组的个数。
示例 1:
输入: nums = [10,5,2,6], k = 100
输出: 8
解释: 8个乘积小于100的子数组分别为: [10], [5], [2], [6], [10,5], [5,2], [2,6], [5,2,6]。
需要注意的是 [10,5,2] 并不是乘积小于100的子数组。
示例 2:
输入: nums = [1,2,3], k = 0
输出: 0
提示:
1 <= nums.length <= 3 * 10 ^ 4
1 <= nums[i] <= 1000
0 <= k <= 10 ^ 6
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/subarray-product-less-than-k
2. 思路分析:
分析题目可以知道我们需要先考虑如何枚举才能够将所有答案枚举出来,一般考虑以位置i结尾的...,对于这道题目来说我们可以考虑所有以i结尾的数字满足要求的连续子数组的个数,并且我们在枚举当前位置i的时候可以结合双指针算法来解决(所有数都是正整数),声明两个指针i,j,当指针i往右走并且乘积大于k之后那么指针j是往右走的所以可以使用双指针算法,i - j + 1就是以当前位置i结尾的满足要求的连续子数组的个数。
3. 代码如下:
from typing import List
class Solution:
# 双指针
def numSubarrayProductLessThanK(self, nums: List[int], k: int) -> int:
j = 0
p = 1
res = 0
for i in range(len(nums)):
p *= nums[i]
while j <= i and p >= k:
p //= nums[j]
j += 1
# i - j + 1就是以位置i结尾的满足要求的连续子数组的个数
res += i - j + 1
return res