求最短路:
1.bellman-ford:
%求s到各点的最短距离
function Dist = Bellman_Ford(s)
load cityJuli;
for i = 1:154
Dist(i) = inf;
end
Dist(s) = 0;
flag = 1;
for j = 1:154 %154个城市
flag = 1;
for i = 1 : 248 %题目给248组数据,遍历每一条边 %用所给数据松弛
if Dist(cityJuli(i,1)) > Dist(cityJuli(i,2)) + cityJuli(i,3) %如果这条边的终点的dist[]值小于起始点的dist[]值加上这条边的权值,则更新dist
Dist(cityJuli(i,1)) = Dist(cityJuli(i,2)) + cityJuli(i,3);
flag = 0;
end
if Dist(cityJuli(i,2)) > Dist(cityJuli(i,1)) + cityJuli(i,3) %由于是无向图,故要反向松弛一遍
Dist(cityJuli(i,2)) = Dist(cityJuli(i,1)) + cityJuli(i,3);
flag = 0;
end
end
if(flag == 1)
break;
end
end
end
%{
void bellman(int s){
memset(d, MAX, sizeof(d));
d[s] = 0; //必须初始化这个
int flag = 1;
for(int k = 0; k < n - 1; k++){
flag = 1;
for(int i = 0; i < m; i++){ //遍历每一条边
if(d[u[i]] > d[v[i]] + w[i]){//如果这条边的终点的d[]值小于起始点的d[]值加上这条边的权值,则更新d
d[u[i]] = d[v[i]] + w[i];
flag = 0;
}
}
if(flag){
break;
}
}
}
%}
2.地杰斯特拉:
function [ distance, path] = Dijk( W,st,e )
% W 权值矩阵 st 搜索的起点 e 搜索的终点
n=length(W);%节点数
D = W(st,:);
for i = 1:n
visit(i) = 1;
end
visit(st)=0;
parent = zeros(1,n);%记录每个节点的上一个节点
path =[];
for i=1:n-1
temp = [];
%从起点出发,找最短距离的下一个点,每次不会重复原来的轨迹,设置visit判断节点是否访问
for j=1:n
if visit(j)
temp =[temp D(j)];
else
temp =[temp inf];
end
end
[value,index] = min(temp);
visit(index) = 0;
%更新 如果经过index节点,从起点到每个节点的路径长度更小,则更新,记录前趋节点,方便后面回溯循迹
for k=1:n
if D(k)>D(index)+W(index,k)
D(k) = D(index)+W(index,k);
parent(k) = index;
end
end
end
distance = D(e);%最短距离
%回溯法 从尾部往前寻找搜索路径
t = e;
while t~=st && t>0
path =[t,path];
p=parent(t);t=p;
end
path =[st,path];%最短路径
end