P3366 【模板】最小生成树(Krushal算法

【模板】最小生成树

题目描述

如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz

输入格式

第一行包含两个整数 N , M N,M N,M,表示该图共有 N N N 个结点和 M M M 条无向边。

接下来 M M M 行每行包含三个整数 X i , Y i , Z i X_i,Y_i,Z_i Xi,Yi,Zi,表示有一条长度为 Z i Z_i Zi 的无向边连接结点 X i , Y i X_i,Y_i Xi,Yi

输出格式

如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz

样例 #1

样例输入 #1

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3

样例输出 #1

7

提示

数据规模:

对于 20 % 20\% 20% 的数据, N ≤ 5 N\le 5 N5 M ≤ 20 M\le 20 M20

对于 40 % 40\% 40% 的数据, N ≤ 50 N\le 50 N50 M ≤ 2500 M\le 2500 M2500

对于 70 % 70\% 70% 的数据, N ≤ 500 N\le 500 N500 M ≤ 1 0 4 M\le 10^4 M104

对于 100 % 100\% 100% 的数据: 1 ≤ N ≤ 5000 1\le N\le 5000 1N5000 1 ≤ M ≤ 2 × 1 0 5 1\le M\le 2\times 10^5 1M2×105 1 ≤ Z i ≤ 1 0 4 1\le Z_i \le 10^4 1Zi104

样例解释:

所以最小生成树的总边权为 2 + 2 + 3 = 7 2+2+3=7 2+2+3=7


业精于勤荒于嬉,行成于思毁于随

#include<iostream>
#include<algorithm>
using namespace std;
const int N=5500;
const int M=200010;
struct Edge{
	int x,y,z;
	bool operator <(const Edge b){
		return z<b.z;
	}
}edge[M];
int p[N];


int find(int x){
	if(p[x]!=x)p[x]=find(p[x]);
	return p[x];
}


int main(){
	int n,m;cin>>n>>m;
	for(int i=0;i<m;i++){
		int x,y,z;cin>>x>>y>>z;
		edge[i]={x,y,z};
	}
	for(int i=1;i<=n;i++)p[i]=i;
	sort(edge,edge+m);
	int res=0,cnt=1; 
	for(int i=0;i<m;i++){
		int a=edge[i].x;
		int b=edge[i].y;
		int w=edge[i].z;
		int fa=find(a),fb=find(b);
		if(fa==fb)continue;
		p[fb]=fa;
	//	printf("a=%d b=%d w=%d \n",a,b,w);
		res+=w;
		cnt++;
	}
	if(cnt==n)cout<<res;
	else cout<<"orz";
	
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值