【模板】最小生成树
题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz
。
输入格式
第一行包含两个整数 N , M N,M N,M,表示该图共有 N N N 个结点和 M M M 条无向边。
接下来 M M M 行每行包含三个整数 X i , Y i , Z i X_i,Y_i,Z_i Xi,Yi,Zi,表示有一条长度为 Z i Z_i Zi 的无向边连接结点 X i , Y i X_i,Y_i Xi,Yi。
输出格式
如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz
。
样例 #1
样例输入 #1
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
样例输出 #1
7
提示
数据规模:
对于 20 % 20\% 20% 的数据, N ≤ 5 N\le 5 N≤5, M ≤ 20 M\le 20 M≤20。
对于 40 % 40\% 40% 的数据, N ≤ 50 N\le 50 N≤50, M ≤ 2500 M\le 2500 M≤2500。
对于 70 % 70\% 70% 的数据, N ≤ 500 N\le 500 N≤500, M ≤ 1 0 4 M\le 10^4 M≤104。
对于 100 % 100\% 100% 的数据: 1 ≤ N ≤ 5000 1\le N\le 5000 1≤N≤5000, 1 ≤ M ≤ 2 × 1 0 5 1\le M\le 2\times 10^5 1≤M≤2×105, 1 ≤ Z i ≤ 1 0 4 1\le Z_i \le 10^4 1≤Zi≤104。
样例解释:
所以最小生成树的总边权为 2 + 2 + 3 = 7 2+2+3=7 2+2+3=7。
业精于勤荒于嬉,行成于思毁于随
#include<iostream>
#include<algorithm>
using namespace std;
const int N=5500;
const int M=200010;
struct Edge{
int x,y,z;
bool operator <(const Edge b){
return z<b.z;
}
}edge[M];
int p[N];
int find(int x){
if(p[x]!=x)p[x]=find(p[x]);
return p[x];
}
int main(){
int n,m;cin>>n>>m;
for(int i=0;i<m;i++){
int x,y,z;cin>>x>>y>>z;
edge[i]={x,y,z};
}
for(int i=1;i<=n;i++)p[i]=i;
sort(edge,edge+m);
int res=0,cnt=1;
for(int i=0;i<m;i++){
int a=edge[i].x;
int b=edge[i].y;
int w=edge[i].z;
int fa=find(a),fb=find(b);
if(fa==fb)continue;
p[fb]=fa;
// printf("a=%d b=%d w=%d \n",a,b,w);
res+=w;
cnt++;
}
if(cnt==n)cout<<res;
else cout<<"orz";
}