普通不等式选讲

前置芝士

一定的数学基础。

什么是不等式

一般地,用纯粹的大于号“ > > >”、小于号“ < < <”连接的不等式称为严格不等式,用不小于号(大于或等于号)“ ≥ ≥ ”、不大于号(小于或等于号)“ ≤ ≤ ”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号( < < <, > > >, ≥ ≥ , ≤ ≤ , ≠ ≠ =)连接的式子叫做不等式。

一元一次不等式

概念

一元一次不等式是一个数学算式,类似于一元一次方程,含有一个未知数,未知数的次数是 1 1 1,未知数的系数不为 0 0 0,左右两边为整式的不等式,叫做一元一次不等式。

例题

例1: 5 x − 3 > 0 5x-3 > 0 5x3>0
思路:对于这道题,直接利用移项,系数化一即可。
解: 5 x > 3 5x > 3 5x>3
∴ \therefore x > 3 5 . x > \frac{3}{5}. x>53.
在数轴上表示:
在这里插入图片描述

例2: − 5 x + 1 < − 1 -5x+1 < -1 5x+1<1
思路:对于这道题,直接移项,系数化一,注意符号。
解: − 5 x < − 2 -5x < -2 5x<2
∴ \therefore x > 2 5 . x > \frac{2}{5}. x>52.
在这里插入图片描述

总结

一元一次不等式注意负数和符号,其他就是一元一次方程。

拓展解法

利用平面直角坐标系解一元一次不等式

例3: 3 x − 2 > 10 3x - 2 > 10 3x2>10
经过化简: 3 x − 12 > 0 3x - 12 > 0 3x12>0,
f ( x ) = 3 x − 12 f(x) = 3x - 12 f(x)=3x12
绘出图像:

在这里插入图片描述
由图像易知: x > 4. x > 4. x>4.

拓展解法总结

根据图像观察即可。

二元一次不等式

概念

二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是 1 1 1次(即一次)的不等式。
满足二元一次不等式(组)的x和y的取值构成有序数对 ( x , y ) (x,y) (x,y),所有这样的有序数对 ( x , y ) (x,y) (x,y)构成的集合称为二元一次不等式(组)的解集。

不等式

例题

例1: 2 x + y > 0 ( x , y ∈ R ) 2x + y > 0 (x,y \in \mathbb{R}) 2x+y>0(x,yR)
∴ \therefore x > − y 2 . x > -\frac{y}{2}. x>2y.

不等式组

例题

例2:
解以下不等式组:
{ 2 x + y > 0 ① 2 x − y < 0 ② \begin{cases} 2x + y > 0 ①\\ 2x - y < 0 ② \end{cases} {2x+y>02xy<0
解法1:
f ( x ) = 2 x + y f(x) = 2x + y f(x)=2x+y
a ( x ) = 2 x − y a(x) = 2x - y a(x)=2xy

绘出图像
在这里插入图片描述
由图像已知:
{ x > 0 , y > 0. \begin{cases} x > 0, \\ y > 0. \end{cases} {x>0,y>0.
解法2:
② ② 得: y − 2 x > 0. ③ y - 2x > 0.③ y2x>0.
① + ③ ①+③ +得: 2 y > 0 2y > 0 2y>0 ∴ \therefore y > 0. y > 0. y>0.
y > 0 y > 0 y>0代入 ① ① 得: 2 x > 0 2x > 0 2x>0 ∴ \therefore x > 0. x > 0. x>0.
∴ \therefore { x > 0 y > 0 , \begin{cases} x > 0 \\ y > 0 \end{cases}, {x>0y>0,为原不等式组的解集.

一元二次不等式解法

概念

一元二次不等式,是指含有一个未知数且未知数的最高次数为 2 2 2的不等式叫做一元二次不等式。它的一般形式是 a x ² + b x + c > 0 ax²+bx+c>0 ax²+bx+c>0 a x ² + b x + c ≠ 0 ax²+bx+c≠0 ax²+bx+c=0 a x ² + b x + c < 0 ( a ≠ 0 ) ax²+bx+c<0(a ≠ 0) ax²+bx+c<0(a=0)

例题

例1: 2 x 2 + 5 x − 3 > 0 2x^2 + 5x - 3 > 0 2x2+5x3>0
解:令 f ( x ) = 2 x 2 + 5 x − 3 f(x) = 2x^2 + 5x -3 f(x)=2x2+5x3
解得: x 1 = 1 2 , x 2 = − 3. x_1 = \frac{1}{2},x_2 = -3. x1=21,x2=3.
绘制图像得:
在这里插入图片描述
由图像可知: ( − ∞ , − 3 ) ∪ ( 1 2 , − 3 ) . (-\infty,-3)\cup(\frac{1}{2},-3). (,3)(21,3).

总结

用图像法解比较简单。

解分段函数

概念

分段函数,就是对于自变量x的不同的取值范围,有着不同的解析式的函数。它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。

例题

例1:已知函数 f ( x ) = { x + 2 ( x ≤ 0 ) − x + 2 ( x > 0 ) , f(x)= \begin{cases} x+2(x \leq 0) \\ -x + 2 (x > 0) \end{cases}, f(x)={x+2(x0)x+2(x>0),解不等式 f ( x ) ≥ x 2 ; f(x) \geq x^2; f(x)x2;
解: 由题意知: { y = x 2 y = x + 2 , \begin{cases} y = x^2 \\ y = x + 2 \end{cases}, {y=x2y=x+2,解得: x 1 = − 1 , x 2 = 2 ( 舍 去 ) x_1 = -1, x_2 = 2(舍去) x1=1,x2=2()
{ y = x 2 y = − x + 2 , \begin{cases} y = x^2 \\ y = -x + 2 \end{cases}, {y=x2y=x+2,解得: x 3 = 1 , x 2 = − 2 ( 舍 去 ) x_3 = 1, x_2 = -2(舍去) x3=1,x2=2()
由图像可知: − 1 ≤ x ≤ 1. -1 \leq x \leq 1. 1x1.

总结

图像是万能的。

含参不等式

概念

含参数的不等式。

例题

例1: x 2 − ( a + a 2 ) x + a 3 > 0 x^2 - (a+a^2)x + a^3 > 0 x2(a+a2)x+a3>0
解: 令 ( x − a 2 ) ( x − a ) = 0. (x-a^2)(x-a)=0. (xa2)(xa)=0.
解得: x 1 = a 2 , x 2 = a . x_1 = a^2, x_2 = a. x1=a2,x2=a.
则令 a = a 2 a = a^2 a=a2,得: a = 0 a = 0 a=0 1 1 1.
① ① a < 0 , a 2 > 0 a <0 , a^2 > 0 a<0,a2>0时: ( − ∞ , a ) ∪ ( a 2 , + ∞ ) . (-\infty,a)\cup(a^2,+\infty). (,a)(a2,+).
② ② a = 0 a=0 a=0时: a = a 2 a = a^2 a=a2, ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) . (-\infty,0)\cup(0,+\infty). (,0)(0,+).
③ ③ a > 0 , a < 1 a>0,a<1 a>0,a<1时: a 2 < a a^2 <a a2<a, ( − ∞ , a 2 ) ∪ ( a , + ∞ ) . (-\infty,a^2)\cup(a,+\infty). (,a2)(a,+).
④ ④ a = 0 a=0 a=0时: a 2 = a = 1 a^2=a=1 a2=a=1, x ≠ 1 x \ne 1 x=1的全体实数.
⑤ ⑤ a > 1 a>1 a>1时: a 2 > a a^2>a a2>a, ( − ∞ , a ) ∪ ( a 2 , + ∞ ) (-\infty,a)\cup(a^2,+\infty) (,a)(a2,+).

总结

解方程,分类讨论。
对于 a x 2 ax^2 ax2的考虑:
1.3种 a a a情况:
a = 0 a = 0 a=0, a < 0 a <0 a<0, a > 0. a > 0. a>0.
2. Δ \Delta Δ
3.韦达定理:
x 1 x 2 = c a , x_1 x_2 = \frac{c}{a}, x1x2=ac,
x 1 + x 2 = − b a . x_1 + x_2 = - \frac{b}{a}. x1+x2=ab.

习题

解不等式: 2 x 3 − x 2 − 15 x > 0 2x^3 - x^2 - 15x > 0 2x3x215x>0
解得: ( − 5 2 , 0 ) ∪ ( 3 , + ∞ ) . (-\frac{5}{2},0)\cup(3,+\infty). (25,0)(3,+).

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值