相似矩阵: A = R − 1 B R A=R^{-1}BR A=R−1BR ,那么A和B相似,他们有相同的特征值
相似性不改变特征值
A
=
Q
R
相似于
R
Q
=
A
1
A=QR相似于RQ=A_1
A=QR相似于RQ=A1
因为
A
1
=
R
Q
=
R
A
R
−
1
A_1=RQ=RAR^{-1}
A1=RQ=RAR−1
A
−
s
I
A-sI
A−sI对A进行位移,他的特征向量不变,特征值变成A特征值减去s
因为原本特征值是
d
e
t
∣
A
−
λ
I
∣
det|A-\lambda I|
det∣A−λI∣的解
A
1
=
R
Q
+
s
I
相似于
Q
R
=
A
−
s
I
A_1=RQ+sI相似于QR=A-sI
A1=RQ+sI相似于QR=A−sI
因为
A
1
=
R
Q
+
s
I
=
R
(
A
−
s
I
)
R
−
1
+
s
I
=
R
A
R
−
1
A_1=RQ+sI=R(A-sI)R^{-1}+sI=RAR^{-1}
A1=RQ+sI=R(A−sI)R−1+sI=RAR−1
两侧乘以正交矩阵不改变奇异值
A
=
U
Σ
V
T
A=U\Sigma V^T
A=UΣVT
Q
1
A
Q
2
=
Q
1
U
Σ
V
T
Q
2
Q_1AQ_2=Q_1U\Sigma V^TQ_2
Q1AQ2=Q1UΣVTQ2
A
x
=
b
Ax=b
Ax=b
krylov空间是这组基向量组成的空间:
b
,
A
b
,
A
A
b
,
.
.
.
,
A
j
−
1
b
b, Ab, AAb, ...,A^{j-1}b
b,Ab,AAb,...,Aj−1b
x
x
x会近似在krylov空间之内
它的正交化按照上面那个顺序就可以,但是不能跳着来
它的用途是当A是巨型矩阵时,近似求
x
x
x