特征值转移和krylov空间杂记

文章讨论了矩阵相似性、特征值的不变性,以及在大型矩阵计算中的Krylov空间应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相似矩阵: A = R − 1 B R A=R^{-1}BR A=R1BR ,那么A和B相似,他们有相同的特征值

相似性不改变特征值
A = Q R 相似于 R Q = A 1 A=QR相似于RQ=A_1 A=QR相似于RQ=A1
因为 A 1 = R Q = R A R − 1 A_1=RQ=RAR^{-1} A1=RQ=RAR1

A − s I A-sI AsI对A进行位移,他的特征向量不变,特征值变成A特征值减去s
因为原本特征值是 d e t ∣ A − λ I ∣ det|A-\lambda I| detAλI的解

A 1 = R Q + s I 相似于 Q R = A − s I A_1=RQ+sI相似于QR=A-sI A1=RQ+sI相似于QR=AsI
因为 A 1 = R Q + s I = R ( A − s I ) R − 1 + s I = R A R − 1 A_1=RQ+sI=R(A-sI)R^{-1}+sI=RAR^{-1} A1=RQ+sI=R(AsI)R1+sI=RAR1

两侧乘以正交矩阵不改变奇异值
A = U Σ V T A=U\Sigma V^T A=UΣVT
Q 1 A Q 2 = Q 1 U Σ V T Q 2 Q_1AQ_2=Q_1U\Sigma V^TQ_2 Q1AQ2=Q1UΣVTQ2

A x = b Ax=b Ax=b
krylov空间是这组基向量组成的空间: b , A b , A A b , . . . , A j − 1 b b, Ab, AAb, ...,A^{j-1}b b,Ab,AAb,...,Aj1b
x x x会近似在krylov空间之内
它的正交化按照上面那个顺序就可以,但是不能跳着来
它的用途是当A是巨型矩阵时,近似求 x x x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值