数值分析学习笔记
文章平均质量分 63
数值分析学习笔记
好学的学渣
三维点云算法工程师
展开
-
数值分析总结
牛顿插值,假设高阶差商为0,差商算是不微的微分。埃特金逐次线性插值,线性方法反复迭代比较。样条插值:构建方程组,待定系数求解。把待拟合函数拆成多个函数的线性组合。拟合问题简化:构建正交基化简方程组。插值根据已知的值,插入几个预测值。龙格-库塔:泰勒展开,待定系数法。拉格朗日插值,把几个已知点摁住。对线性系数求偏导,零偏导等于0。牛顿-柯特斯:插值,积分。原创 2023-12-01 11:39:25 · 185 阅读 · 0 评论 -
常微分方程
对于方程y′(x)=f(x,y)y'(x)=f(x,y)y′(x)=f(x,y)它的数值解是yi+1=yi+hf(xi,yi)y_{i+1}=y_i+hf(x_i,y_i)yi+1=yi+hf(xi,yi),给定一个y0y_0y0,可以求出一系列yiy_iyi它来源于导数的近似解中点法yi+1=yi+hf(xi+h2,yi+h2f(xi,yi))y_{i+1}=y_i+hf(x_i+\frac{h}{2}, y_i+\frac{h}{2}f(x_i,y_i))yi+1=yi+hf(x原创 2023-12-01 11:15:52 · 149 阅读 · 0 评论 -
数值微分和数值积分
数值微分和数组积分都有用函数值近似拟合的形式,它们可以表述成xi的数组微分(积分)∑akfxk。原创 2023-12-01 11:16:07 · 134 阅读 · 0 评论 -
拟合:最小二乘逼近
∫abfxgxdx0表示在[a,b]区间,fx和gx正交函数空间的标准正交基是自乘为1,它乘为0的一组函数。原创 2023-11-30 11:45:55 · 113 阅读 · 0 评论 -
插值...
有数据(x0,y0),(x1,y1),....,(xn,yn)(x_0, y_0),(x_1,y_1),....,(x_n,y_n)(x0,y0),(x1,y1),....,(xn,yn)可以构造n+1个基函数bi(x)=yi(x−x0)(x−x1)...(x−xi−1)(x−xi+1)...(x−xn)(xi−x0)(xi−x1)...(xi−xi−1)(xi−xi+1)...(xi−xn)b_i(x)=y_i\frac{(x-x_0)(x-x_1)...(x-x_{i-1})(x-x_{原创 2023-12-01 11:15:31 · 151 阅读 · 0 评论 -
矩阵的条件数及病态方程组的处理
逆的求解比较复杂,也有一些经验性公式判断病态矩阵。,如果A或者b有轻微的变动,会使得求解出的。它越小越好,||A||是A的范数。,再求解Ax=r,方法迭代更新。发生巨变,这种矩阵就是病态的。条件数过大,矩阵就是病态是。求b计算和真实b误差。原创 2023-11-30 11:45:21 · 723 阅读 · 0 评论 -
线性和非线性方程组迭代法
迭代法是通过构造xϕx,让x迭代收敛至解向量。原创 2023-11-28 17:35:36 · 133 阅读 · 0 评论 -
误差增长,收敛速度,二分法求函数近似解
的形式,然后给定一个初始x,代入g(x)更新,反复迭代到g(x)和x差异很小,这个方法收敛与否取决于g(x)的选取。连续函数如果f(a)和f(b)符号相反,他们之间一定有个根是f(x)=0,可以用二分法迭代缩小区间求近似解。割线法和斯蒂芬森法用其他东西近似替代导数。, 泰勒展开到一次项,然后解出一个。,它经过n次操作后有误差。原创 2023-11-23 14:58:26 · 171 阅读 · 0 评论 -
计算机精度导致各种误差,大数吃小数
这和真实结果差了很多,因为精度不够,大数加小数的时候把小数吃掉了,导致后续结果都出现问题,一个办法是交换顺序。从绝对误差的角度看,差异很小,但是从相对误差的角度来看误差就非常大了。所以在计算a-b时绝对误差是0.0000008。舍入误差,就是数据表示精度不足带来的误差。如果精度有限可能会发生下面的情况。但是想对误差是0.44。在上面发生了舍入误差。原创 2023-11-23 14:58:05 · 485 阅读 · 0 评论 -
inf和nan
在某些编程语法中inf表示无穷大,nan表示不是一个数(not a number)nan表示这个数无法被计算,而inf表示这个数溢出,超过数值表达范围。因为两个无穷大相减有很多可能,可能等于一个常数,也可能等于无穷大。nan表示这个数不确定,而无穷大表示这个数任意大。这里把0当做一个无限接近0,但是非0的数。一个数减去无穷大会等于负无穷大。而inf-inf=nan。原创 2023-11-22 10:09:26 · 494 阅读 · 0 评论 -
泰勒多项式
这表示把函数展开成一个多项式的和以及一个误差项。原创 2023-11-22 10:08:59 · 184 阅读 · 0 评论 -
积分...
加强平均值理论: 如果f在[a,b]有定义,并且g(x)在ab区间的黎曼积分存在,并且g(x)在ab没有改变符号,Rolle理论:如果一段区域内有n个零,那么它如果它有n-1阶导,就会有一个n-1阶导等于0。中值理论:ab之间有个c,会使得。那么在ab内一定存在一个c满足。可以是这个区间内的任意值。原创 2023-11-21 16:17:06 · 84 阅读 · 0 评论 -
导数...
罗尔定理:如果函数在[a,b]可导,并且f(a)=f(b),那么[a,b]区间内一定有个导数是0。中值定理:如果函数在[a,b]可导,那么这个区间内一定有个c满足。极值定理:在可导区间内,最大最小值要么在边界要么在导数为0的地方。原创 2023-11-21 16:16:53 · 93 阅读 · 0 评论 -
函数的极限和联系以及与数列收敛的联系
连续,则可以构造一个收敛于。,都有一个N,当n>N时。原创 2023-11-20 15:34:22 · 130 阅读 · 0 评论