凸优化理论
文章平均质量分 59
凸优化理论学习笔记
好学的学渣
三维点云算法工程师
展开
-
凸函数的定义,保凸运算和各种性质
定义: 函数fRn→R是凸的,如果domf是凸集,且对于任意xy∈domf和任意0≤θ≤1都有fθx1−θy≥θfx1−θfy从几何上看就是两个点的线段在函数之上fy≥fx∇fxTy−xf′′x≥R0这边大于号是各个元素都大于0的意思下水平集:函数fRn→R的α下水平集定义为Cαx∈domf∣fx≤a。原创 2023-12-28 16:39:36 · 837 阅读 · 0 评论 -
对偶锥与广义不等式
锥定义的广义不等式的对偶不等式就锥的对偶锥定义的广义不等式。当且仅当-y是K在原点的一个支撑超平面的法线。的唯一最优解.从几何上看,这意味着对于任意。广义不等式及其对偶有一些重要性质。是在x处对S的一个严格支撑超平面。的最小元的充要条件是,对于所有。它是锥并且是凸的,即便K不凸。那么它对偶的对偶就是自身。x是S上关于广义不等式。原创 2023-12-28 16:38:42 · 691 阅读 · 0 评论 -
分离与支撑超平面
严格分离就是上面公式不带等号,但是不是所有不相交的凸集都有严格分离。任意两个不相交的凸集C和D,都可以被一个超平面分割开。支撑超平面定理:任意凸集中的任意边界点。是集合C和D的分离超平面。是C边界的一点,对于任意。原创 2023-12-28 16:38:23 · 632 阅读 · 0 评论 -
广义不等式
K是凸的,K是闭的,K是实的,K是尖的(即不包含直线,,类似的可以定义严格偏序关系。对于极限运算是保序的,即对于。K是正常锥,则满足下列条件。x是S中的极小元,当且仅当。对于非负数乘是保序的。原创 2023-12-28 16:37:53 · 628 阅读 · 0 评论 -
凸集的保凸运算
相当于把向量最后一个维度归一化,然后丢掉。原创 2023-12-28 16:37:15 · 484 阅读 · 0 评论 -
仿射集合和凸集
ps.凸锥的凸和凸包的凸的它们都表示线性组合在集合内,不过它们组合的条件不一样,凸包要求是线段,也就是权重和为1,且为正,锥只要求正.但是从空间的角度来看凸锥和锥的区别在于凸锥是连续的锥,不凸的锥是几条离散的线。ps.为什么说任意范数都一样,是因为不同范数都可以表示周围的概念,并且r可以是任意正数,所以范数类型不重要,不是内部的点除了外部点还有就是边界点,边界点的r不管取多小,它的周围都会超出边界。在集合之内,凸组合和仿射组合的区别是凸组合的系数都是零到壹之内的,它的系数和也是和为1。原创 2023-12-28 16:36:28 · 547 阅读 · 0 评论