opencv 画框

利用yolo的输出,中心和wh

用的torch框架

cap = cv2.VideoCapture('.//6.mp4')
while True:
	ret, frame = cap.read()
	ori_img = frame #存个原图用于显示
	frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB) #opencv读取是BGR的格式
	img1=np.array(frame)
	res_img = cv2.resize(img1, (cfg["width"], cfg["height"]), interpolation = cv2.INTER_LINEAR)
	img = res_img.reshape(1, cfg["height"], cfg["width"], 3)#改成网络需要的大小
	img = torch.from_numpy(img.transpose(0,3, 1, 2))  #channel first 再加个batch
	img = img.to(device).float() / 255.0
	#特征图后处理
    output = utils.utils.handel_preds(preds, cfg, device)
    output_boxes = utils.utils.non_max_suppression(output, conf_thres=0.7, iou_thres = 0.4)
    h, w, _ = ori_img.shape
    scale_h, scale_w = h / cfg["height"], w / cfg["width"] #用于改成原图上的相对大小
     for box in output_boxes[0]:
        box = box.tolist()

        obj_score = box[4]
        category = LABEL_NAMES[int(box[5])]

        x1, y1 = int(box[0] * scale_w), int(box[1] * scale_h)
        x2, y2 = int(box[2] * scale_w), int(box[3] * scale_h)

        cv2.rectangle(ori_img, (x1, y1), (x2, y2), (255, 255, 0), 2)
        cv2.putText(ori_img, '%.2f' % obj_score, (x1, y1 - 5), 0, 0.7, (0, 255, 0), 2)
        cv2.putText(ori_img, category, (x1, y1 - 25), 0, 0.7, (0, 255, 0), 2)


    cv2.imshow("test_result.png", ori_img) #show放在 循环标框的后面
    if cv2.waitKey(1) & 0xFF==ord('q'): # 按键q后break
        cap.release()
        break

cap.release() # 对应while结束
cv2.destroyWindow()

重点

img1=np.array(frame) #有时候用的 PIL.Image.read() 返回的是个类
res_img = cv2.resize(img1, (cfg["width"], cfg["height"]), interpolation = cv2.INTER_LINEAR)
img = torch.from_numpy(img.transpose(0,3, 1, 2))  #channel first 再加个batch
 img = img.to(device).float() / 255.0 #很对时候忘记归一化

还有就是

#这个得有
      if cv2.waitKey(1) & 0xFF==ord('q'): # 按键q后break
        cap.release()
        break
cap.release() # 对应while结束
cv2.destroyWindow()     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值