tensorflow2.x学习笔记二十三:卷积(转置卷积)层中的padding=valid和same的区别(含ZeroPadding2D)

本文探讨了卷积和转置卷积层中padding='same'与'valid'的区别,并通过公式详细解释了输出尺寸的计算方式。同时,介绍了在无法直接获得期望输出形状时,如何利用ZeroPadding2D层进行数据填充以满足需求。文中还提到了ZeroPadding2D层参数设置,包括填充数值和数据格式的处理,并强调输入数据应为四维格式。
摘要由CSDN通过智能技术生成
对于转置卷积和卷积,输入高宽(i),输出高宽(o),步长(s),卷积核的高宽(k)(设定高宽相等都为k)满足以下关系:

1. 卷积:

       padding = 'same’时,o = i/s 向上取整
       padding = 'valid’时, o = (i-k)/s + 1 向下取整

2.转置卷积:

       padding = 'same’时,o = i * s
       padding = 'valid’时, o = (i-1)*s+k

下面使用jupyter进行验证:

import tensorflow as tf
from tensorflow.keras import laye
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耐心的小黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值