学习——信号调制识别(一)

本文介绍了通信信号调制识别技术,包括基于似然比判决理论和统计模式的识别方法,详细阐述了非高斯噪声、多径衰落信道及大动态信噪比环境下的识别策略,探讨了特征提取和分类器选择的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习——信号调制识别 (一)

  看了《通信信号调制识别技术及其发展》这一论文后,将学习到的知识记录在这篇博客里。

1、通信信号调制识别技术

  调制识别问题从本质上来说是一种典型的模式识别问题。其基本框架如图所示:
这里写图片描述
   调制识别由三部分组成:信号预处理、提取特征参数和分类识别。信号预处理部分包括载波同步、频率下变频、噪声抑制以及对信噪比、符号周期、载波频率等参数的估计。特征提取部分是从数据中提取事先定义好的表征信号调制类型的特征,即利用信号处理工具如小波、循环平稳、累积量等提取信号的时域或变换域特征参数。分类识别部分是在特征参数提取的基础上,选择和确定合适的判决规则和识别分类器。

2、通信信号的调制识别方法

   从信号检测和模式识别的意义
上来说,调制识别的方法大致可以分为两类:基于似然比判决理论的识别方法和基于统计模式的识别方法。

2.1 基于似然比判决理论的识别方法

   基本思想:根据信号的统计特性,依据代价函数最小化原则,通过理论分析与推导得到检验统计量,再将它与一个合适的门限进行比较,形成判决准则。最后由判决准则确定输出结果,完成通信信号调制方式的分类识别。
   其统计量一般多为 似然比或者平均似然比的最优解或者次优解
  令信号分类集的每种信号对应一个 λk,i=1,2,K. λ k , i = 1 , 2 , ⋯ K . K K 为不同调制方式的信号种类数。然后将接收序列映射到观测空间 R ,并计算与统计观测样本对应的概率函数,然后根结果判断信号类型。若用于构造似然函数的观测值 r

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值