大数据算法面试:1亿数据在有限内存上如何排序

相信大家或多或少都看过一些算法类的面试题,其中比较常出现的就有大数据排序问题。因为目前的内存仍无法处理TB级的数据,只能通过不同的算法优化以及I/O来进行尽可能快速的排序。

对于这类题目,我总结了以下几种排序方法,同时也提出了自己的一些疑问,希望大家可以一起讨论。这里只讨论nlogn级别的算法,其他的不列入讨论范围。

题型:亿级别数据(同型且有重复),统计其中出现次数最多的前N个数据

两种情况:可一次读入内存,不可一次读入

解法:

一、区间快速排序(当某个区间的长度=N则输出排序区间)

二、堆排序(维护N个结点的堆结构)

三、哈希映射(用hash将大文件映射为小文件,依次进内存排序后输出)

四、trie树

五、位图 (Bit Map)

  所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图灵的猫.

小二,给客官上酒!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值