第六周周赛题解
A.界面越花 编程越拉
标签:动态规划 mid
题目大意:给你一个数 n n n, n n n可以从 n − 1 n-1 n−1的状态转移过来,也可以用 n 2 \frac{n}{2} 2n的状态转移过来,问从0开始能有多少种方案。
思路:如果能够把题意理解到上述意思,其实解法就很明确了,就是一个简单的递推,每个值由两个状态转移得到。
程序表达如下:
dp[i] = dp[i - 1] + dp[i / 2]
同样可以使用记忆化搜索来解决这个问题(不使用记忆化的话会因为数据量过大而T)
DP的标程如下:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define ll long long
#define endl "\n"
const int max_n = 1e5 + 100;
const int mod = 1e9 + 7;
int ans = 0;
int dp[max_n]; //dp[i]为初始值为i的方案数
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n;
cin >> n;
dp[1] = 2;
for (int i = 2; i <= n; i++)
dp[i] = (dp[i - 1] + dp[i / 2]) % mod;
cout << dp[n] << endl;
return 0;
}
B.你是个好人
标签:签到题 easy
直接提交给出的代码就行了。
项目地址在这里Change_code_underline感兴趣的可以去看看。
C.爱你呦
标签:字符串匹配 mid
字符串暴力匹配替换就行了。
标程:
//C
#include<string.h>
#include<stdio.h>
#include<math.h>
int t,i,j,la,lb;
char a[1005],b[1005],th[1005];
int bj[1005];
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%s%s%s",a,b,th);
la=strlen(a); lb=strlen(b);
for(int i=0;i<la;i++)
bj[i]=0;
for(i=0;i<la-lb+1;i++)
{
int pp=1;
for(j=0;j<lb;j++)
{
if(a[i+j]!=b[j])
{
pp=0; break;
}
}
if(pp==1)
{
bj[i]=1;
i+=lb-1;
}
}
for(i=0;i<la;i++)
{
if(bj[i])
{
printf("%s",th);
i+=lb-1;
}
else printf("%c",a[i]);
}
printf("\n");
}
return 0;
}
//C++
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define endl "\n"
const int max_n = 1e5 + 100;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int T;
cin >> T;
while (T--)
{
string s1, s2, s3;
cin >> s1 >> s2 >> s3;
int pos = 0;
while ((pos = s1.find(s2, pos)) != string::npos)
{
s1.replace(pos, s2.size(), s3);
pos += s3.size();
}
cout << s1 << endl;
}
return 0;
}
D.爬山
标签:模拟 easy
题意:给出n个值,找到所有数大于它相邻左边的值和相邻右边的值,输出这些数的下标。
思路:按照题目模拟。
标程:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define endl "\n"
const int max_n = 1e5 + 100;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
int h[max_n];
int ans[max_n];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int T;
cin >> T;
while (T--)
{
int n;
cin >> n;
for (int i = 1; i <= n; i++)
cin >> h[i];
int id = 0;
for (int i = 2; i < n; i++)
{
if (h[i] > h[i - 1] && h[i] > h[i + 1])
ans[id++] = i;
}
if (!id)
cout << "0" << endl;
else
{
for (int i = 0; i < id; i++)
cout << ans[i] << " ";
cout << endl;
}
}
return 0;
}
E.游戏
标签:贪心 双指针 模拟 mid
题目为了简化问题,减少了很多东西。读完之后分析一下发现,给的攻击力和防御力只有一个值有用,我们只需要取其中最大的那一个,在以后可以提升自己的能力的时候选择那一个就行了,并且又不会扣血,也没有让找最优解,所以我们只需要把所有能走的都走一遍进行模拟看看能不能到达门那里就行了。
标程如下
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define endl "\n"
const int max_n = 1e6 + 100;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
int arr[max_n], buf[max_n], vi[max_n];
int n, a, d, e, ex;
bool ans = false;
bool cal(int x)
{
if (arr[x] == 2)
{
a += vi[x];
return true;
}
else if (arr[x] == 3)
{
ex += vi[x];
a += ex / e;
ex %= e;
return true;
}
else if (arr[x] == 5)
{
ans = true;
return true;
}
else if (arr[x] == 1 && a > vi[x])
{
ex += vi[x] / 2;
a += ex / e;
ex %= e;
return true;
}
else if (arr[x] == 0 || arr[x] == 4)
return true;
return false;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int T;
cin >> T;
while (T--)
{
ans = false;
cin >> n >> a >> d >> e;
a = max(a, d);
int st = 0, ed = 0, id = 0;
for (int i = 0; i < n; i++)
{
cin >> arr[i];
if (arr[i] == 1 || arr[i] == 2 || arr[i] == 3)
buf[id++] = i;
if (arr[i] == 4)
st = i;
if (arr[i] == 5)
ed = i;
}
for (int i = 0; i < id; i++)
cin >> vi[buf[i]];
int l, r, ex;
l = r = st;
ex = 0;
bool isok = true;
while (isok)
{
isok = false;
if (l >= 0)
{
if (cal(l))
{
isok = true;
l--;
}
}
if (r < n)
{
if (cal(r))
{
isok = true;
r++;
}
}
if (ans)
{
cout << "YES" << endl;
break;
}
}
if (!ans)
cout << "NO" << endl;
}
return 0;
}
F.你又是个好人
标签:二分 mid
题意是给你n个数,这n个数刚开始是乱序的。进行m次询问,问你询问的那个数是第几小的数。
方法一:
有n个数还要求第几小的话,我们可以先对他排序,对于m次查询,我们可以二分查找。n的范围是 1 e 5 1e5 1e5,所以排序的算法需要是nlogn的,这里就推荐直接使用C++的sort函数,或者自己手写一个快速排序。二分查找也可以直接使用STL里面的lower_bound函数,或者自己手写一个都行。
需要注意的是,这里面可能会出现重复的数,所以我们应该在排过序之后对数组进行去重,去重的话对C可能会麻烦一些,如果借助STL的一些函数就会方便很多。
方法二:
使用STL的map进行映射。
//方法一:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define endl "\n"
const int max_n = 1e5 + 100;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
vector<int> nums;
int get(int x)
{
return lower_bound(nums.begin(), nums.end(), x) - nums.begin() + 1;
}
int main()
{
int n;
cin >> n;
int m;
cin >> m;
for (int i = 0; i < n; i++)
{
int tmp;
cin >> tmp;
nums.push_back(tmp);
}
sort(nums.begin(), nums.end());
nums.erase(unique(nums.begin(), nums.end()), nums.end());
while (m--)
{
int x;
cin >> x;
cout << get(x) << endl;
}
cout << "Wo Tai Qiang Le" << endl;
return 0;
}
//方法二
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define endl "\n"
const int max_n = 1e5 + 100;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, m;
cin >> n >> m;
map<int, int> mp;
for (int i = 0; i < n; i++)
{
int tmp;
cin >> tmp;
mp[tmp] = 1;
}
int id = 1;
for (auto &i : mp)
i.second = id++;
while (m--)
{
int x;
cin >> x;
cout << mp[x] << endl;
}
cout << "Wo Tai Qiang Le" << endl;
return 0;
}
G.H.结束了
标签:数论 G-easy H-hard
题目意思是寻找[1,n]的所有数的最小公倍数。
在这道题之前,先说一个数学定理:唯一分解定理又叫算术基本定理。
定理中提到:对于任何一个大于1的正整数,都存在唯一的分解式: n = p 1 k 1 ∗ p 2 k 2 ∗ . . . ∗ p n k n n = p_1^{k_1}*p_2^{k_2}*...*p_n^{k_n} n=p1k1∗p2k2∗...∗pnkn,其中 p i p_i pi都是素数。
知道了这个定理之后,再去求1到n的最小公倍数就变成了求出小于n的质数的最高幂次的乘积。
由于数据过大,所以需要使用线性筛法,为了照顾大家线性筛的写法都给大家了。
筛出所有的素数之后,进行暴力枚举最高次幂就行了。
#include <bits/stdc++.h>
using namespace std;
#pragma GCC optimize("O2")
#define ll long long
#define endl "\n"
const int max_n = 1e8 + 100;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
int primes[6000000], id = 0;
bool used[max_n];
void init(int n)
{
for (int i = 2; i <= n; ++i)
{
if (!used[i])
primes[id++] = i;
for (int j = 0; j < id && i * primes[j] <= n; ++j)
{
used[i * primes[j]] = true;
if (i % primes[j] == 0)
break;
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n;
cin >> n;
init(n);
ll ans = 1;
for (int i = 0; i < id; ++i)
{
if (primes[i] > n)
break;
ll t = 1;
while (t <= n)
t *= primes[i];
t /= primes[i];
ans = ans * t % mod;
}
cout << ans << endl;
return 0;
}