分治
文章平均质量分 74
仁者乐山智者乐水
这个作者很懒,什么都没留下…
展开
-
分治系列-算法思想与模板
文章目录一、介绍二、原理与思想三、算法模板四、更多经典题目一、介绍 分治,顾名思义,分而治之。分治法(divide and conquer)也是一种解决问题的常用模式,分治法的设计思想是将无法着手解决的大问题分解成一系列规模较小的相同问题,然后逐个解决小问题,即所谓的分而治之。分治法产生的子问题与原始问题相同,只是规模减小,反复使用分治方法,可以使得子问题的规模不断减小,直到能够被直接求解为止。 分治法作为算法设计中一个古老的策略,在很多问题中得到了广泛的应用,比如最大、最小问题(例如在一堆形原创 2021-06-10 22:10:42 · 806 阅读 · 0 评论 -
分治系列-二叉搜索树的后序编列序列
一、题目描述输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。如果是则返回 true,否则返回 false。假设输入的数组的任意两个数字都互不相同。参考以下这颗二叉搜索树:示例1:输入: [2,5,4,7,8]输出: false示例2:输入: [2,5,4,8,7]输出: true二、解题思路后序遍历性质: 节点按照 [ 左子树 | 右子树 | 根节点 ] 排序。二叉搜索树性质:左子树节点 < 根节点 < 右子树节点 在二叉树的后序遍历序列中,最后一原创 2021-06-08 22:08:20 · 311 阅读 · 0 评论 -
分治系列-根据前序和中序遍历重建二叉树
一、题目描述输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。示例1:前序遍历:[3,5,7,8,10]中序遍历:[7,5,3,8,10]示例图如下:二、解题思路前序遍历性质: 节点按照 [ 根节点 | 左子树 | 右子树 ] 排序。中序遍历性质: 节点按照 [ 左子树 | 根节点 | 右子树 ] 排序。 在二叉树的前序遍历序列中,第一个数字总是树的根节点的值。但在中序遍历序列中,根节点的值在序列的中间,左子树的节点的值位原创 2021-06-06 21:38:27 · 331 阅读 · 4 评论