全系列
[win 10] maskrcnn-benchmark 上手(1)——配置环境与coco数据集介绍
[win 10] maskrcnn-benchmark 上手(2)——开始训练
[win 10] maskrcnn-benchmark 上手(3)—— faster-rcnn 推理
0.配置
1.推断
运行test_net.py
2020-04-03 11:52:17,543 maskrcnn_benchmark.inference INFO: Start evaluation on coco_2017_val dataset(5000 images).
100%|██████████| 1251/1251 [09:34<00:00, 2.18it/s]
2020-04-03 12:01:52,155 maskrcnn_benchmark.inference INFO: Total run time: 0:09:34.612641 (0.11492252826690674 s / img per device, on 1 devices)
2020-04-03 12:01:52,155 maskrcnn_benchmark.inference INFO: Model inference time: 0:09:18.700329 (0.11174006581306457 s / img per device, on 1 devices)
2020-04-03 12:01:52,466 maskrcnn_benchmark.inference INFO: Preparing results for COCO format
2020-04-03 12:01:52,467 maskrcnn_benchmark.inference INFO: Preparing bbox results
2020-04-03 12:01:53,621 maskrcnn_benchmark.inference INFO: Evaluating predictions
在推断完之后会保存一个json,注意,此时没有可视化图像。test_net的脚本会自动对训练结果进行评估。
inference的时候也可以选择apex。这里测试一下apex在inference下有没有作用:(训练一晚上,相同的模型)。速度确实有快一些,但不至于两倍那么夸张。
-
没有apex
AP, AP50, AP75, APs, APm, APl
0.2119, 0.3941, 0.2075, 0.1113, 0.2246, 0.2776 -
有apex
AP, AP50, AP75, APs, APm, APl
0.2120, 0.3941, 0.2072, 0.1113, 0.2248, 0.2769
2.可视化
好像没有专门可视化的脚本,官网也没说明这部分。但是demo中有,我们可以在里面进行可视化。demo/Mask_R-CNN_demo.ipynb。这是我训练一晚上(单卡)的样子~ 感觉还不错。