动态规划——最长湍流子数组

问题来源:leetcode 978

最长湍流子数组

A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组:

  • i <= k < j,当 k 为奇数时,A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1]
  • i <= k < j,当 k 为偶数时,A[k] > A[k+1],且当 k 为奇数时,A[k] < A[k+1]
    也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。

返回 A 的最大湍流子数组的长度。

示例 1:

输入:[9,4,2,10,7,8,8,1,9]
输出:5
解释:(A[1] > A[2] < A[3] > A[4] < A[5])

示例 2:

输入:[4,8,12,16]
输出:2

示例 3:

输入:[100]
输出:1 

提示:

  • 1 <= A.length <= 40000
  • 0 <= A[i] <= 10^9

动态规划

优化子结构设以 a r r [ i ] arr[i] arr[i] 为结尾的最长湍流子数组的长度为 n n n,证明该问题的最优解包含其子问题的最优解,或者说该问题的最优解可以由其子问题的最优解构造得到:

  • 如果 a r r [ i ] = = a r r [ i − 1 ] arr[i] == arr[i-1] arr[i]==arr[i1],那么以 a r r [ i ] arr[i] arr[i] 为结尾的最长湍流子数组的长度为 1 1 1,不需要子问题的解。
  • 如果 a r r [ i ] > a r r [ i − 1 ] arr[i] > arr[i-1] arr[i]>arr[i1] a r r [ i − 1 ] < a r r [ i − 2 ] arr[i-1] < arr[i-2] arr[i1]<arr[i2],那么 n − 1 n-1 n1 是子问题(以 a r r [ i − 1 ] arr[i-1] arr[i1] 为结尾的数组)的最长湍流子数组的长度,也就是说只需要求解该子问题。可以通过反证法证明:假设子问题的最长湍流子数组的长度大于 n − 1 n-1 n1,那么又因为 a r r [ i ] > a r r [ i − 1 ] arr[i] > arr[i-1] arr[i]>arr[i1] a r r [ i − 1 ] < a r r [ i − 2 ] arr[i-1] < arr[i-2] arr[i1]<arr[i2],所以 a r r [ i ] arr[i] arr[i] 可以接在该湍流子数组的后面,所以以 a r r [ i ] arr[i] arr[i] 为结尾的最长湍流子数组的长度就大于 n n n,与假设矛盾。
  • 如果 a r r [ i ] < a r r [ i − 1 ] arr[i] < arr[i-1] arr[i]<arr[i1] a r r [ i − 1 ] > a r r [ i − 2 ] arr[i-1] > arr[i-2] arr[i1]>arr[i2],那么 n − 1 n-1 n1 是子问题(以 a r r [ i − 1 ] arr[i-1] arr[i1] 为结尾的数组)的最长湍流子数组的长度,证明过程与前面相同。
  • 对于其他情况( a r r [ i ] > a r r [ i − 1 ] > a r r [ i − 2 ] arr[i] > arr[i-1] > arr[i-2] arr[i]>arr[i1]>arr[i2] a r r [ i ] < a r r [ i − 1 ] < a r r [ i − 2 ] arr[i] < arr[i-1] <arr[i-2] arr[i]<arr[i1]<arr[i2]),那么无论以 a r r [ i − 1 ] arr[i-1] arr[i1] 为结尾的最长湍流子数组的长度为多少,以 a r r [ i ] arr[i] arr[i] 结尾的最长湍流子数组的长度为 2。
  • 还有 a r r [ i − 2 ] arr[i-2] arr[i2] 不存在的情况,只需要看 a r r [ i ] arr[i] arr[i] a r r [ i ] arr[i] arr[i] 是否相等,就可以得到原问题的解。

重叠子问题:简单地使用递归算法来求解,很容易发现具有子问题被重复计算。

递归地定义最优解的值 d p [ i ] dp[i] dp[i] 表示以 a r r [ i ] arr[i] arr[i] 结尾的最长湍流子数组的长度,对于数组的每个位置 i i i,以该位置元素结尾的最长湍流子数组的长度计算过程如下:

  • 首先初始化 d p dp dp 数组的所有位置都为 1 1 1
  • 如果 d p [ i − 1 ] dp[i-1] dp[i1] 为 1:
    • 如果 a r r [ i ] ≠ a r r [ i − 1 ] arr[i] \neq arr[i-1] arr[i]=arr[i1] 时, d p [ i ] = 2 dp[i]=2 dp[i]=2
    • 否则保持 1 1 1 不变。
  • 否则:
    • 如果 a r r [ i ] > a r r [ i − 1 ] arr[i] > arr[i-1] arr[i]>arr[i1] a r r [ i − 1 ] < a r r [ i − 2 ] arr[i-1] < arr[i-2] arr[i1]<arr[i2] a r r [ i ] < a r r [ i − 1 ] arr[i] < arr[i-1] arr[i]<arr[i1] a r r [ i − 1 ] > a r r [ i − 2 ] arr[i-1] > arr[i-2] arr[i1]>arr[i2],那么 d p [ i ] = d p [ i − 1 ] + 1 dp[i] = dp[i-1] + 1 dp[i]=dp[i1]+1
    • 否则看 a r r [ i − 1 ] arr[i-1] arr[i1] a r r [ i ] arr[i] arr[i] 是否相等,不相等的话将 d p [ i ] dp[i] dp[i] 的值置为 2 2 2

自底向上地计算最优解的值:只需要从前向后遍历数组,便可以确保每一个问题计算时,其相关的子问题均已经被计算了出来。

class Solution {
public:
    int maxTurbulenceSize(vector<int>& arr) {
        int n = arr.size();
        if(n == 1) {
            return 1;
        }
        vector<int> dp(n, 1);
        for(int i = 1; i<n; i++) {
            if(dp[i-1] == 1) {
                dp[i] = arr[i-1] == arr[i] ? 1 : 2;
            } else if(arr[i] != arr[i-1]) {
                if((arr[i] > arr[i-1] && arr[i-1] < arr[i-2]) || (arr[i] < arr[i-1] && arr[i-1] > arr[i-2])) {
                    dp[i] = dp[i-1] + 1;
                } else {
                    dp[i] = 2;
                }
            }
        }
        return *max_element(dp.begin(), dp.end());
    }
};  

空间优化:注意到每个 d p [ i ] dp[i] dp[i] 只与 d p [ i − 1 ] dp[i-1] dp[i1] 相关,所以可以通过一个变量来表示 d p dp dp 数组,另外再通过一个变量保存当前最长湍流子数组的长度即可。

class Solution {
public:
    int maxTurbulenceSize(vector<int>& arr) {
        int n = arr.size();
        if(n == 1) {
            return 1;
        }

        int result = 1, temp = 1;
        for(int i = 1; i<n; i++) {
            if(temp == 1) {
                temp = arr[i-1] == arr[i] ? 1 : 2;
            } else if(arr[i] != arr[i-1]) {
                if((arr[i] > arr[i-1] && arr[i-1] < arr[i-2]) || (arr[i] < arr[i-1] && arr[i-1] > arr[i-2])) {
                    temp++;
                } else {
                    temp = 2;
                }
            }
            result = temp > result ? temp : result;
        }
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值