动态规划——买卖股票的最佳时机 Ⅳ

问题来源:leetcode 188

买卖股票的最佳时机 Ⅳ

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

示例 2:

输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
     随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 0 <= k <= 10^9
  • 0 <= prices.length <= 1000
  • 0 <= prices[i] <= 1000

动态规划

优化子结构:设 d p [ i ] [ j ] [ 0 ] dp[i][j][0] dp[i][j][0] 表示第 i i i 天结束时,恰好参与了 j j j 笔交易,且手里没有股票的最大利润;设 d p [ i ] [ j ] [ 1 ] dp[i][j][1] dp[i][j][1] 表示第 i i i 天结束时,恰好参与了 j j j 笔交易,且手中持有股票的最大利润。规定买入股票就算是一次交易的开始,卖出股票时交易次数不会再增加。
首先分析原问题的最优解 d p [ i ] [ j ] [ 0 ] dp[i][j][0] dp[i][j][0] 是如何包含子问题的最优解的,或者说 d p [ i ] [ j ] [ 0 ] dp[i][j][0] dp[i][j][0] 是如何用子问题的最优解来构造的

  • 如果前一天手中没有股票(子问题一),那么 d p [ i ] [ j ] [ 0 ] dp[i][j][0] dp[i][j][0] 便是该子问题 “第 i − 1 i-1 i1 天结束,恰好参与了 j j j 笔交易,且手中没有股票” 的最优解,即 d p [ i ] [ j ] [ 0 ] = d p [ i − 1 ] [ j ] [ 0 ] dp[i][j][0]=dp[i-1][j][0] dp[i][j][0]=dp[i1][j][0],也就是说只需要求解子问题 d p [ i − 1 ] [ j ] [ 0 ] dp[i-1][j][0] dp[i1][j][0]。可以通过反证法来证明:假设 d p [ i − 1 ] [ j ] [ 0 ] dp[i-1][j][0] dp[i1][j][0] 不是其自身子问题的最优解,而是存在一个更优的解 d p ′ [ i − 1 ] [ j ] [ 0 ] dp^{'}[i-1][j][0] dp[i1][j][0],那么由于第 i − 1 i-1 i1 天没有股票,第 i i i 天也没有股票,那么第 i i i 天肯定没有进行股票买卖,所以会产生原问题的一个更优的解 d p ′ [ i − 1 ] [ j ] [ 0 ] dp^{'}[i-1][j][0] dp[i1][j][0],与 d p [ i ] [ j ] [ 0 ] = d p [ i − 1 ] [ j ] [ 0 ] dp[i][j][0]=dp[i-1][j][0] dp[i][j][0]=dp[i1][j][0] 是原问题的最优解矛盾。所以在前一天也没有股票的情况话,可以直接由子问题的最优解来构造原问题的最优解。
  • 如果前一天手中持有股票(子问题二),那么 d p [ i ] [ j ] [ 0 ] − p r i c e s [ i ] dp[i][j][0]-prices[i] dp[i][j][0]prices[i] 便是该子问题 “第 i − 1 i-1 i1 天结束,恰好参与了 j j j 次交易,且手中持有股票” 的最优解,也就是说只需要求解子问题。同样可以通过反证法来证明,略。

接下来分析 d p [ i ] [ j ] [ 1 ] dp[i][j][1] dp[i][j][1] 是如何包含子问题的最优解的

  • 如果前一天手中持有股票(子问题一),那么 d p [ i ] [ j ] [ 1 ] dp[i][j][1] dp[i][j][1] 便是该子问题的最优解,即 d p [ i ] [ j ] [ 1 ] = d p [ i − 1 ] [ j ] [ 1 ] dp[i][j][1]=dp[i-1][j][1] dp[i][j][1]=dp[i1][j][1],即只需要求解子问题 d p [ i − 1 ] [ j ] [ 1 ] dp[i-1][j][1] dp[i1][j][1]
  • 如果前一天手中没有股票(子问题二),那么 d p [ i ] [ j ] [ 1 ] + p r i c e s [ i ] dp[i][j][1] + prices[i] dp[i][j][1]+prices[i] 表示该子问题的最优解,即 d p [ i ] [ j ] [ 1 ] = d p [ i − 1 ] [ j ] [ 0 ] − p r i c e s [ i ] dp[i][j][1]=dp[i-1][j][0]-prices[i] dp[i][j][1]=dp[i1][j][0]prices[i],只需要求解子问题 d p [ i − 1 ] [ j ] [ 0 ] dp[i-1][j][0] dp[i1][j][0]

以上分析说明该问题具有优化子结构,

重叠子问题:举例说明,计算 d p [ i ] [ j ] [ 0 ] dp[i][j][0] dp[i][j][0] d p [ i ] [ j ] [ 1 ] dp[i][j][1] dp[i][j][1] 时,都需要用到子问题 d p [ i − 1 ] [ j ] [ 1 ] dp[i-1][j][1] dp[i1][j][1] 的解,即存在重叠子问题。

递归地定义最优解的值:初始化 d p dp dp 数组的大小为 n ∗ ( k + 1 ) ∗ 2 n*(k+1)*2 n(k+1)2,初始化 d p [ 0 ] [ j ] [ 0 ] = 0 dp[0][j][0]=0 dp[0][j][0]=0 d p [ 0 ] [ j ] [ 1 ] = − p r i c e s [ 0 ] dp[0][j][1]=-prices[0] dp[0][j][1]=prices[0],当 i > 1 i>1 i>1 时,对于 j j j 的每个取值:
d p [ i ] [ j ] [ 0 ] = { 0 j = 0   ∣ ∣   i = 0 m a x ( d p [ i − 1 ] [ j ] [ 0 ] ,   d p [ i − 1 ] [ j ] [ 1 ] + p r i c e s [ i ] ) i > 0 ,   j > 0 dp[i][j][0]=\left\{\begin{array}{cc} 0 & j=0\ ||\ i=0\\ max(dp[i-1][j][0],\ dp[i-1][j][1] + prices[i]) & i>0,\ j>0 \end{array}\right. dp[i][j][0]={0max(dp[i1][j][0], dp[i1][j][1]+prices[i])j=0  i=0i>0, j>0

d p [ i ] [ j ] [ 1 ] = { 0 j = 0 − p r i c e s [ 0 ] i = 0 m a x ( d p [ i − 1 ] [ j ] [ 1 ] ,   d p [ i − 1 ] [ j − 1 ] [ 0 ] − p r i c e s [ i ] ) i > 0 ,   j > 0 dp[i][j][1]=\left\{\begin{array}{cc} 0 & j=0\\ -prices[0] & i =0 \\ max(dp[i-1][j][1],\ dp[i-1][j-1][0] - prices[i]) & i>0,\ j>0 \end{array}\right. dp[i][j][1]=0prices[0]max(dp[i1][j][1], dp[i1][j1][0]prices[i])j=0i=0i>0, j>0
注意可以同一天同时买入并卖出,这样就算一笔交易,但是收益为 0,所以在第一天时( i = 0 i=0 i=0),无论 j j j 取多少,我们都可以完成这么多次交易, d p [ 0 ] [ j ] [ 0 ] = 0 dp[0][j][0]=0 dp[0][j][0]=0;也可以前 j − 1 j-1 j1 次买入并同时卖出,第 j j j 次买入不卖出,这样就是 d p [ 0 ] [ j ] [ 1 ] = − p r i c e s [ 0 ] dp[0][j][1]=-prices[0] dp[0][j][1]=prices[0]

自底向上地计算最优解的值:从前向后遍历 p r i c e s prices prices 数组,对于该数组的每一个位置,为每个可能的交易次数填充此时手中是否持有股票的最大利润,这样在计算每一个 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 时,都可以保证其相关的子问题都已经被计算过且保存在数组中了。

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        int n = prices.size();
        if(k == 0 || n < 2) {
            return 0;
        }

        vector<vector<vector<int>>> dp(n, vector<vector<int>>(k+1, vector<int>(2)));
        for(int j=1; j<=k; j++) {
            dp[0][j][1] = -prices[0];
        }

        for(int i=1; i<n; i++) {
            for(int j=1; j<=k; j++) {
                dp[i][j][0] = max(dp[i-1][j][0], dp[i-1][j][1] + prices[i]);
                dp[i][j][1] = max(dp[i-1][j][1], dp[i-1][j-1][0] - prices[i]);
            }
        }
        
        return dp[n-1][k][0];
    }
};

做空间优化:注意到每个 d p [ i ] [ . . . ] [ . . . ] dp[i][...][...] dp[i][...][...] 仅与 d p [ i − 1 ] [ . . . ] [ . . . ] dp[i-1][...][...] dp[i1][...][...] 相关,所以可以仅维护一个二维数组,而不再是维护三维数组。
关于这里 j j j 是正序还是倒序,可以参考

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        int n = prices.size();
        if(k == 0 || n < 2) {
            return 0;
        }

        vector<vector<int>> dp(k+1, vector<int>(2));
        for(int j=1; j<=k; j++) {
            dp[j][1] = -prices[0];
        }

        for(int i=1; i<n; i++) {
            for(int j=1; j<=k; j++) {
                dp[j][0] = max(dp[j][0], dp[j][1] + prices[i]);
                dp[j][1] = max(dp[j][1], dp[j-1][0] - prices[i]);
            }
        }
        
        return dp[k][0];
    }
};
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值