1.数据预处理的步骤。
数据预处理有四个步骤:数据清理、数据集成、数据规约、数据变换。
数据清理: 现实世界的数据一般是不完整的、有噪声的盒不一致的。数据清理例程试图填充缺失的值、光滑噪声并识别离群点、纠正数据中的不一致。
数据集成: 合并来自多个数据存储的数据。
数据规约: 可以用来得到数据集的规约表示,它小得多,但仍接近于保持原始数据的完整性。
2.数据质量的评估,举出例子。
数据质量用准确性、完整性、一致性、时效性、可信性和可解释性进行评估,对于随时间变化的时间序列数据时效性就显得特别重要。
3.数据缺失值得处理方法。
(1)忽略元组: 当该元组有多个缺失值,大于5%。
(2)人工填写缺失值: 一般来说,该方法很费时,数据大时不适用。
(3)使用一个全局常量填充缺失值: 将缺失值用同一个常量替换(如“Unknown”),该方法简单但不可靠。
(4)使用属性的中心度量(如均值或中位数)填补缺失值: 对于对称的数据使用均值,对于倾斜的数据使用中位数。
(5)使用与给定元祖属性同一类的所有样本的属性均值或中位数。
(6)使用最可能的值填充: 可以使用回归、使用贝叶斯形式化方法的基于推理的工具或决策树归纳确定。
4.考虑数据集成需要考虑的问题。
(1)识别实体问题: 来自多个信息源的现实世界的等价实体如何才能“匹配”。
(2)冗余和相关分析: 对数据进行先关分析以减少冗余数据,标称数据的卡方相关检验,数值数据的相关系数,数值数据的协方差,元组重复。
(3)数值冲突的检测与处理。
5.使用如下方法规范如下数据组:200,300,400,600,1000
(a).令min =0,max = 1,最小-最大规范化。
最小-最大规范化: v i ′ = v i − m i n A m a x A − m i n A ( n e w m a x A − n e w m i n A ) + n e w m i n A v^{'}_i =\frac{v_i-min_A}{max_A-min_A}(newmax_A - newmin_A) + newmin_A vi′=maxA−minAv
数据预处理
最新推荐文章于 2024-09-21 10:57:04 发布
本文详细介绍了数据预处理的四个步骤:数据清理、数据集成、数据规约和数据变换。讨论了数据质量评估的六个指标,并列举了数据缺失值的处理方法,包括忽略、人工填充、全局常量、属性中心度量和最可能值填充。此外,还探讨了数据集成中的实体匹配、冗余和相关分析以及数值冲突处理。最后,展示了数据规范化过程,包括最小-最大规范化、z分数规范化和小数定标规范化的方法及其应用实例。
摘要由CSDN通过智能技术生成