本文用给自己做笔记,所以内容会很乱。
把不会的记录下来,即加深印象,以后又可以查看笔记。
np.mean()
求平均值
可传入参数,list,np.array, np.mat
用法:
np.mean([1,2,3]) # 输入2,计算1,2,3的平均值
two_dim_array = [ [1,2,3],[4,5,6] ] # 二维的
np.mean(two_dim_array) # 输入3.5
np.mean(two_dim_array,axis = 0) # 每一列计算一个均值 结果:array([2.5, 3.5, 4.5])
np.mean(two_dim_array,axis = 1) # 结果array([2., 5.])
#所以,axis不指定,全部数一起求平均,axis=0,每一列计算均值,axis=1每一行计算均值
scatter根据类别涂色:
label = [2, 2, 1, 0, 2, 2, 1, 0, 2, 2, 1, 0, 2, 2, 1, 0, 2, 2, 1, 0]
print(label)
color_map = {'0': 'r', '1': 'b', '2': 'k', '3': 'y'}
label_len = len(label)
color = [color_map.get(str(label[i])) for i in range(label_len)]
plt.scatter(data[:, 0].A, data[:, -1].A, c=color)
plt.show()
也可以用lambda匿名函数:
x = Mat[:, 0]
y = Mat[:, 1]
map_size = {-1: 50, 1: 100}
size = list(map(lambda x: map_size[x], Label))
map_color = {-1: 'r', 1: 'g'}
color = list(map(lambda x: map_color[x], Label))
map_marker = {-1: 'o', 1: 'v'}
markers = list(map(lambda x: map_marker[x], Label))
# 下面一行代码会出错,因为marker参数不支持列表
# plt.scatter(np.array(x), np.array(y), s=size, c=color, marker=markers)
# 下面一行代码为修正过的代码
plt.scatter(np.array(x), np.array(y), s=size, c=color, marker='o') # scatter函数只支持array类型数据
plt.show()
frozenset
为什么需要冻结的集合(即不可变的集合)呢?因为在集合的关系中,有集合的中的元素是另一个集合的情况,但是普通集合(set)本身是可变的,那么它的实例就不能放在另一个集合中(set中的元素必须是不可变类型)。
所以,frozenset提供了不可变的集合的功能,当集合不可变时,它就满足了作为集合中的元素的要求,就可以放在另一个集合中了。
参考到的网址:
numpy.mean()的几种用法:
https://blog.csdn.net/wangxingfan316/article/details/80038388
python让scatter能够使不同类别的点有不同的颜色、大小和形状:
https://blog.csdn.net/u014571489/article/details/102667570
FP-growth算法详解