numpy,pandas,matplotlib使用积累

本文用给自己做笔记,所以内容会很乱。

把不会的记录下来,即加深印象,以后又可以查看笔记。

 

 

np.mean()

求平均值

可传入参数,list,np.array, np.mat

用法:

np.mean([1,2,3])  # 输入2,计算1,2,3的平均值

two_dim_array = [ [1,2,3],[4,5,6] ]    # 二维的
np.mean(two_dim_array)    # 输入3.5
np.mean(two_dim_array,axis = 0)    # 每一列计算一个均值 结果:array([2.5, 3.5, 4.5])
np.mean(two_dim_array,axis = 1)    # 结果array([2., 5.])

#所以,axis不指定,全部数一起求平均,axis=0,每一列计算均值,axis=1每一行计算均值

 

scatter根据类别涂色:

    label = [2, 2, 1, 0, 2, 2, 1, 0, 2, 2, 1, 0, 2, 2, 1, 0, 2, 2, 1, 0]
    print(label)
    color_map = {'0': 'r', '1': 'b', '2': 'k', '3': 'y'}
    label_len = len(label)
    color = [color_map.get(str(label[i])) for i in range(label_len)]
    plt.scatter(data[:, 0].A, data[:, -1].A, c=color)
    plt.show()

也可以用lambda匿名函数: 

x = Mat[:, 0]
    y = Mat[:, 1]
    map_size = {-1: 50, 1: 100}
    size = list(map(lambda x: map_size[x], Label))
    map_color = {-1: 'r', 1: 'g'}
    color = list(map(lambda x: map_color[x], Label))
    map_marker = {-1: 'o', 1: 'v'}
    markers = list(map(lambda x: map_marker[x], Label))
    # 下面一行代码会出错,因为marker参数不支持列表
    #  plt.scatter(np.array(x), np.array(y), s=size, c=color, marker=markers)
    # 下面一行代码为修正过的代码
    plt.scatter(np.array(x), np.array(y), s=size, c=color, marker='o')  # scatter函数只支持array类型数据
    plt.show()

 

frozenset

为什么需要冻结的集合(即不可变的集合)呢?因为在集合的关系中,有集合的中的元素是另一个集合的情况,但是普通集合(set)本身是可变的,那么它的实例就不能放在另一个集合中(set中的元素必须是不可变类型)。

所以,frozenset提供了不可变的集合的功能,当集合不可变时,它就满足了作为集合中的元素的要求,就可以放在另一个集合中了。

 

 

 

 

参考到的网址:

numpy.mean()的几种用法:

https://blog.csdn.net/wangxingfan316/article/details/80038388

python让scatter能够使不同类别的点有不同的颜色、大小和形状:
https://blog.csdn.net/u014571489/article/details/102667570

FP-growth算法详解

https://www.cnblogs.com/zlslch/p/6789179.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值