GMM与LDA

GMM虽然给出的结果是隐变量属于各个cluster的概率,但是GMM模型仍然是认为每个样本就是只属于某一个cluster。GMM模型的原理就是认为每个样本都是由一个正态分布产生的。

与GMM不同,LDA是一种mixed membership model,对样本的每个维度都产生属于各个cluster的概率,即认为这个样本本身就是同时属于多个cluster的(因为各个维度里有属于不同cluster的)

LDA用于主题分析,不同于聚类。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值