扩展中国剩余定理模板

题目链接:点击这里

题目大意:
给定 n n n 组非负整数 a i , b i a_i, b_i ai,bi ,求解关于 x x x 的方程组的最小非负整数解。
{ x ≡ b 1 m o d    m 1 x ≡ b 2 m o d    m 2 . . . x ≡ b n m o d    m n \left \{ \begin{array}{c} x \equiv b_1 \mod m_1\\ x \equiv b_2 \mod m_2\\ ...\\ x \equiv b_n \mod m_n\\ \end{array} \right. xb1modm1xb2modm2...xbnmodmn
与中国剩余定理不同的是,此时的 m 1 , m 2 , . . . , m n m_1,m_2,...,m_n m1,m2,...,mn 两两不必互质

题目分析:
中国剩余定理求出的 m 1 , m 2 , . . . , m n m_1,m_2,...,m_n m1,m2,...,mn 两两互质的同余方程组的解为:
x 0 ≡ ∑ i = 1 n b i M i i n v ( M i , m i ) m o d    n x_0 \equiv \sum_{i=1}^nb_iM_iinv(M_i,m_i) \mod n x0i=1nbiMiinv(Mi,mi)modn
因为 i n v ( M i , m i ) inv(M_i,m_i) inv(Mi,mi) M i , m i M_i,m_i Mi,mi 不互质时是不存在的,所以中国剩余定理只能解决 m 1 , m 2 , . . . , m n m_1,m_2,...,m_n m1,m2,...,mn 两两互质的情况,对于 m 1 , m 2 , . . . , m n m_1,m_2,...,m_n m1,m2,...,mn 两两不一定互质的方程很难在 c r t crt crt 的基础上进行修改来使之完备,这是 e x c r t excrt excrt 为了解决这种问题边应运而生了。
我们用数学归纳法,假设我们已经求出来了前 k − 1 k-1 k1 个方程的解 x x x ,令 M = ∑ i = 1 k − 1 m i M=\sum_{i=1}^{k-1}m_i M=i=1k1mi ,则 x + a M ( a ∈ Z ) x+aM(a \in Z) x+aM(aZ) 也是前 k − 1 k-1 k1 个方程的解。
在计算第 k k k 个方程时,我们求 t t t 使之满足:
x + t M ≡ b i m o d    n x+tM \equiv b_i \mod n x+tMbimodn
等价于求:
t M ≡ b i − x m o d    n tM \equiv b_i-x \mod n tMbixmodn
转化为求不定方程:
M t + n y = b i − x Mt+ny=b_i-x Mt+ny=bix
此式可通过扩欧判断其是否有解,若有解, x ′ = x + t M x^{'}=x+tM x=x+tM 就是前 k k k 个方程的解,通过这种迭代方法从求出的前两个方程的解就可以求出对全部方程的解了

具体细节见代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<unordered_map>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
ll read()
{
	ll res = 0,flag = 1;
	char ch = getchar();
	while(ch<'0' || ch>'9')
	{
		if(ch == '-') flag = -1;
		ch = getchar();
	}
	while(ch>='0' && ch<='9')
	{
		res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
		ch = getchar();
	}
	return res*flag;
}
const int maxn = 1e5;
const int mod = 1e9+7;
const double pi = acos(-1);
const double eps = 1e-8;
ll n,b[maxn],m[maxn],mul = 1;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
	if(b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	ll d = exgcd(b,a%b,x,y);
	int tmp = x;
	x = y;
	y = tmp-y*(a/b);
	return d;
}
ll ksc(ll a,ll b,ll mod)
{
	return (a*b-(ll)((long double)a/mod*b)*mod+mod)%mod;
}
ll excrt(ll b[],ll m[],ll n)
{
	ll ans = b[1],M = m[1],d,x,y;
	for(int i = 2;i <= n;i++)
	{
		d = exgcd(M,m[i],x,y);
		ll c = ((b[i]-ans)%m[i]+m[i])%m[i];
		if(c%d) return -1; // 无解 
		x = ksc(c/d,x,m[i]/d);//x = c/d*x%(m[i]/d);
		ans += M*x;
		M = M/d*m[i];
		ans = (ans%M+M)%M;
	}
	return (ans%M+M)%M;
}
int main()
{
	n = read();
	for(int i = 1;i <= n;i++)
		m[i] = read(),b[i] = read();
	printf("%lld\n",excrt(b,m,n));
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值