数论函数
定义:定义域为正整数,值域复数的一类函数
积性函数:规定
f
(
1
)
=
1
f(1) = 1
f(1)=1 ,当
gcd
(
a
,
b
)
=
1
\gcd(a,b)=1
gcd(a,b)=1 时,有
f
(
a
b
)
=
f
(
a
)
f
(
b
)
f(ab)=f(a)f(b)
f(ab)=f(a)f(b)
完全积性函数:对于任意的 a , b a,b a,b ,有 f ( a b ) = f ( a ) f ( b ) f(ab) = f(a)f(b) f(ab)=f(a)f(b)
常见的积性函数:
ϵ
(
n
)
=
[
n
=
1
]
(
完
全
积
性
函
数
)
\epsilon(n)=[n=1]\ (完全积性函数)
ϵ(n)=[n=1] (完全积性函数)
i
d
(
n
)
=
n
(
完
全
积
性
函
数
)
id(n)=n\ (完全积性函数)
id(n)=n (完全积性函数)
i
d
k
(
n
)
=
n
k
(
完
全
积
性
函
数
)
id_k(n)=n^k\ (完全积性函数)
idk(n)=nk (完全积性函数)
I
(
n
)
=
1
(
完
全
积
性
函
数
)
I(n)=1\ (完全积性函数)
I(n)=1 (完全积性函数)
d
(
n
)
=
∑
i
∣
n
1
d(n)=\sum_{i|n}1
d(n)=i∣n∑1
σ
(
n
)
=
∑
i
∣
n
i
\sigma(n)=\sum_{i|n}i
σ(n)=i∣n∑i
σ
k
(
n
)
=
∑
i
∣
n
i
k
\sigma_k(n)=\sum_{i|n}i^k
σk(n)=i∣n∑ik
μ
(
n
)
=
{
0
∃
p
,
p
2
∣
n
(
−
1
)
k
n
=
∏
i
=
1
k
p
i
\mu(n)=\left\{ \begin{aligned} &0 & \exists p,p^2|n \\ &(-1)^k & n=\prod_{i=1}^kp_i \end{aligned} \right.
μ(n)=⎩⎪⎪⎨⎪⎪⎧0(−1)k∃p,p2∣nn=i=1∏kpi
φ
(
n
)
=
∑
i
=
1
n
[
gcd
(
n
,
i
)
=
1
]
\varphi(n)=\sum_{i=1}^n[\gcd(n,i)=1]
φ(n)=i=1∑n[gcd(n,i)=1]
欧拉函数的性质
- 若 n = p k n=p^k n=pk ,则 φ ( n ) = p k − p k − 1 = ( p − 1 ) p k − 1 \varphi(n)=p^k-p^{k-1}=(p-1)p^{k-1} φ(n)=pk−pk−1=(p−1)pk−1
- 1 1 1 到 n n n 的与 n n n 互质的数的和: ∑ i = 1 n i [ g c d ( i , n ) = 1 ] = ∑ i = 1 n [ n = 1 ] + n φ ( i ) 2 \sum_{i=1}^ni[gcd(i,n)=1]=\sum_{i=1}^n\frac{[n=1]+n\varphi(i)}2 ∑i=1ni[gcd(i,n)=1]=∑i=1n2[n=1]+nφ(i)
- ∑ d ∣ n φ ( d ) = n \sum_{d|n}\varphi(d)=n ∑d∣nφ(d)=n
- 若 p ∣ n p|n p∣n 且 p 2 ∤ n p^2\not|n p2∣n ,则有 φ ( n ) = φ ( n p ) ( p − 1 ) \varphi(n)=\varphi(\frac np)(p-1) φ(n)=φ(pn)(p−1) (积性函数性质)
- 若 p ∣ n p|n p∣n 且 p 2 ∣ n p^2|n p2∣n ,则有 φ ( n ) = φ ( n p ) p \varphi(n)=\varphi(\frac np)p φ(n)=φ(pn)p
- f ( n ) = ∑ i = 1 n [ g c d ( i , k ) = 1 ] = n k φ ( k ) + f ( n m o d k ) f(n)=\sum_{i=1}^n[gcd(i,k)=1] = \frac nk\varphi(k)+f(n \mod k) f(n)=∑i=1n[gcd(i,k)=1]=knφ(k)+f(nmodk)
迪利克雷卷积
看起来很高深,其实就是两个数论函数的一种运算
定义:两个数论函数
f
,
g
f,g
f,g 的卷积,记做
(
f
∗
g
)
(
n
)
=
∑
d
∣
n
f
(
d
)
g
(
n
d
)
(f*g)(n)=\sum_{d|n}f(d)g(\frac nd)
(f∗g)(n)=∑d∣nf(d)g(dn) ,表示在
n
n
n 这个范围的
f
f
f 卷
g
g
g(后面的括号一般可以省略不写,默认为
n
n
n)
迪利克雷卷积满足如下运算规则:
- 交换律: f ∗ g = g ∗ f f*g=g*f f∗g=g∗f
- 结合律: ( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f*g)*h=f*(g*h) (f∗g)∗h=f∗(g∗h)
- 分配律: ( f + g ) ∗ h = f ∗ h + g ∗ h (f+g)*h=f*h+g*h (f+g)∗h=f∗h+g∗h
元函数
ϵ
(
n
)
\epsilon(n)
ϵ(n) 是迪利克雷卷积的单位元,即
f
∗
ϵ
=
f
f*\epsilon=f
f∗ϵ=f
其实在莫比乌斯反演和欧拉函数的学习中我们学习到了两个重要的式子均可表达为迪利克雷卷积的形式:
∑
d
∣
n
μ
(
d
)
=
[
n
=
1
]
\sum_{d|n}\mu(d)=[n=1]
∑d∣nμ(d)=[n=1] ,等价于
μ
∗
I
=
ϵ
\mu*I=\epsilon
μ∗I=ϵ
∑
d
∣
n
φ
(
d
)
=
n
\sum_{d|n}\varphi(d)=n
∑d∣nφ(d)=n ,等价于
φ
∗
I
=
i
d
\varphi*I=id
φ∗I=id
利用上述两式和迪利克雷卷积的性质可以证明
φ
\varphi
φ 与
μ
\mu
μ 的关系:
φ
∗
I
=
i
d
\varphi*I=id
φ∗I=id
φ
∗
I
∗
μ
=
i
d
∗
μ
\varphi*I*\mu=id*\mu
φ∗I∗μ=id∗μ
φ
∗
ϵ
=
i
d
∗
μ
\varphi*\epsilon=id*\mu
φ∗ϵ=id∗μ
即
φ
=
i
d
∗
μ
\varphi=id*\mu
φ=id∗μ ,等价于
φ
(
n
)
=
∑
d
∣
n
μ
(
d
)
i
d
(
n
d
)
=
∑
d
∣
n
n
μ
(
d
)
d
\varphi(n)=\sum_{d|n}\mu(d)id(\frac nd)=\sum_{d|n} \frac{n\mu(d)}{d}
φ(n)=∑d∣nμ(d)id(dn)=∑d∣ndnμ(d) ,两边同时除以
n
n
n 可得
φ
(
n
)
n
=
∑
d
∣
n
μ
(
d
)
d
\frac{\varphi(n)}n=\sum_{d|n}\frac{\mu(d)}{d}
nφ(n)=d∣n∑dμ(d)