用欧几里得扩展求不定方程的一组整数解

用欧几里德扩展求解不定方程的整数解:

 

上回说到辗转相除法也就是欧几里德算法:链接

https://blog.csdn.net/qq_39652552/article/details/84073880

其中有个重要的性质 gcd(a,b) = gcd( b,a%b)

我们利用其性质做一下扩展,就可以用它做不定方程的求解。

引理:存在x,y 使得 ax + by = gcd(a,b)

利用贝祖定理证明:

如果a = 0 = b 结论显然成立。

如果b = 0(a = 0同理) 因为 gcd(a,b) = a     所以 ax + by = a 一定存在一个解,x = 1, y = 0 

当a!= 0 && b!= 0 

ax1 + by1 = gcd(a,b) 因为 gcd(a,b) = gcd(b,a%b)

所以ax1 + by1 = gcd(b,a%b)又因为 bx2 + (a%b)y2 = gcd(b,a%b)

所以ax1 + by1 = bx2 + (a%b)y2    a%b可以表示为 (a - k * b)( k = a /b(计算机里的/) )

则 ax1 + by1 = bx2 + (a - k * b)y2 将等式右边展开得到 ax1 + by1 = bx2 + ay2 - kby2

于是ax1 + by1 = ay2 + b(x2 - ky2)

所以 x1 = y2  y1 = (x2 - ky2),因此,每一层的x和y可以由下一层推出来

当b = 0时是最后一组解,递归下去算得最后一层的解,再层层递归回来就能算出来第一层的x和y

代码如下:

int qiu( int a, int b, int & x, int & y)
{
    int t, r;
    if( b == 0) //递归基
    {
        x = 1;
        y = 0;
        return a;
    }
    else
    {

        r = qiu( b, a%b , x , y );
        t = x;
        x = y;
        y = t - a/b * y;
    }
    return r;
}

拿a = 24 b = 16 做一下示范吧

首先第一层是 24 * x1 + 16 *y1 = gcd(24,16)

               二:  16 * x2 + 8 * y1 =gcd(16,8)

               三:   8 * x3            = gcd (8,0)

由第三层得到x3 = 1 , y=0  然后由这两个下面这两个式子向上推,算出x1和y1

x1 = y2  

y1 = (x2 - ky2)【注意,k是等于a/b哦】

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值