DTLib - Sort

目录

1、排序的基本概念

2、DTLib中的排序类设计

3、选择排序

4、插入排序

5、冒泡排序

6、希尔排序

7、归并排序

8、快速排序

9、排序的工程应用示例

10、小结 


1、排序的基本概念

排序的一般定义 

                    排序是计算机内经常进行的—种操作,其目的是将一组“无序”的数据元素调整为“有序”的数据元素。 

排序的数学定义 

                    假设含n个数据元素的序列为: { R1,R2 , ... ,Rn} , 其相应的关键字序列为: { K1,K2 , ... ,Kn } ; 

                    这些关键字相互之间可以进行比较,即:在它们之间存在着这样—个关系: Kp1 <= Kp2 <=...<= Kpn

                    按此固有关系将上式记录序列重新排列为:  { Rp1,Rp2, ... ,Rpn } 的操作称为排序。 

排序的示例 

            

                          按总评排序后为什么张无忌的排名比郭靖靠前呢? 

排序的稳定性 

                    如果在序列中有两个数据元素 r[i] 和 r[j],它们的关键字 k[i]== k[j],且在排序之前,对象 r[i] 排在 r[j] 前面;

                    如果在排序之后,对象 r[i]仍在对象 r[j] 的前面,则称这个排序方法是稳定的,否则称这个排序方法是不稳定的。

稳定性排序示例 

            

多关键字排序 

                  - 排序时需要比较的关键字多余一个 

                          排序结果首先按关键字1进行排序 

                          当关键字1相同时按关键字2进行排序 

                          ....

                          当关键字n-1相同时按关键字n进行排序

多关键字排序示例 

            

                对于多关键字排序,只需要在比较操作时同时考虑多个关键字即可!! 

编程实验 

多关键字比较操作

#include <iostream>
#include "Object.h"

using namespace std;
using namespace DTLib;

struct Test : public Object
{
    int key1;    //high priority
    int key2;

    Test(int k1, int k2)
    {
        key1 = k1;
        key2 = k2;
    }
    bool operator == (const Test& t)
    {
        return (key1 == t.key1) && (key2 == t.key2);
    }
    bool operator != (const Test& t)
    {
        return !(*this == t);
    }
    bool operator < (const Test& t)
    {
        return (key1 < t.key1) || ((key1 == t.key1) && (key2 < t.key2));
    }
    bool operator >= (const Test& t)
    {
        return !(*this < t);
    }
    bool operator > (const Test& t)
    {
        return (key1 > t.key1) || ((key1 == t.key1) && (key2 > t.key2));
    }
    bool operator <= (const Test& t)
    {
        return !(*this > t);
    }
};

int main()
{
    Test t1(3, 4);
    Test t2(2, 5);
    Test t3(3, 4);
    Test t4(3, 5);

    cout << (t1 > t2) << endl;    //1
    cout << (t3 < t4) << endl;    //1

    return 0;
}

排序中的关键操作 

            -比较:任意两个数据元素通过比较操作确定先后次序 

            -交换:数据元素之间需要交换才能得到预期结果

排序的审判 

             -时间性能:关键性能差异体现在比较和交换的数量 

             -辅助存储空间:为完成排序操作需要的额外的存储空间,必要时可以“空间换时间” 

             -算法的实现复杂性:过于复杂的排序法可能影响可读性和可维护性

 

2、DTLib中的排序类设计

                            

DTLib中的排序类 Sort.h

#ifndef SORT_H
#define SORT_H

#include "Object.h"

namespace DTLib
{

class Sort : public Object
{
private:
    Sort();
    Sort(const Sort&);
    Sort& operator = (const Sort&);

    template <typename T>
    static void swap(T& a, T& b)
    {
        T t(a);
        a = b;
        b = t;
    }
public:
    // 排序算法
};
}


#endif // SORT_H

3、选择排序

选择排序的基本思想 

                   每次(例如第 i 次,i = 0,1, …,n-2)从后面n-i个待排的数据元素中选出关键字最小的元素

                   作为有序元素序列第 i 个元素。 

第 i 次选择排序示例

            

 

            

            

选择排序的实现 Sort::Select

#ifndef SORT_H
#define SORT_H

#include "Object.h"

namespace DTLib
{

class Sort : public Object
{
private:
    Sort();
    Sort(const Sort&);
    Sort& operator = (const Sort&);

    template <typename T>
    static void Swap(T& a, T& b)
    {
        T t(a);
        a = b;
        b = t;
    }
public:
    template < typename T >
    static void Select(T array[], int len, bool min2max = true)
    {
        for(int i = 0; i < len; i++)
        {
            int min = i;

            for(int j = i + 1; j < len; j++)
            {
                if(min2max ? array[min] > array[j] : array[min] < array[j] )
                {
                    min = j;//记录最小元素下标
                }
            }
            if(min != i)    //追求高效代码,交换相比比较耗时
            {
                Swap(array[i], array[min]);
            }
        }
    }
};
}

#endif // SORT_H

main.cpp

#include <iostream>
#include "Sort.h"

using namespace std;
using namespace DTLib;

int main()
{
    int array[] = {7, 9, 4, 6, 2};

    Sort::Select(array, 5);

    for(int i = 0; i < 5; i++)
    {
        cout << array[i] << " ";
    }

    cout << endl;

    Sort::Select(array, 5, 0);

    for(int i = 0; i < 5; i++)
    {
        cout << array[i] << " ";
    }

    cout << endl;

    return 0;
}

                            

4、插入排序

插入排序的基本思想

                   当插入第i (i >= 1)个数据元素时,前面的V[0],V[1] ,…,V[i-1]已经排好序;

                   这时,用V[i]的关键字与V[i-1],V[i-2],…, V[0]的关键字进行比较,找到

                   位置后将V[i]插入, 原来位置上的对象向后顺移。 

第 i 次插入排序示例

        

 

    

        

           

插入排序的实现    Sort::Insert

#ifndef SORT_H
#define SORT_H

#include"Object.h"

namespace DTLib
{

class Sort : public Object
{
private:
    Sort();
    Sort(const Sort&);
    Sort& operator = (const Sort&);

    template <typename T>
    static void Swap(T& a,T& b)
    {
        T t(a);
        a = b;
        b = t;
    }
public:
    template < typename T >
    static void Select(T array[],int len,bool min2max=true)
    {
        for(int i = 0; i < len; i++)
        {
            int min = i;

            for(int j = i + 1; j < len; j++)
            {
                if(min2max ? array[min] > array[j] : array[min] < array[j] )
                {
                    min = j;
                }
            }
            if(min != i)    //追求高效代码,交换相比比较耗时
            {
                Swap(array[i], array[min]);
            }
        }
    }

    template < typename T >
    static void Insert(T array[], int len, bool min2max = true)
    {
        for(int i = 1; i < len; i++)
        {
            int k = i;
            T e = array[i];

//            for(int j = i - 1; j >=0 ;j--)
//            {
//                if(array[j] > e)
//                {
//                    array[j+1] = array[j];
//                    k = j;
//                }
//                else
//                {
//                    break;
//                }
//            }
            for(int j = i - 1; j >= 0 && (min2max ? (array[j] > e) : (array[j] < e));j--)
            {
                array[j+1] = array[j];
                k = j;
            }

            if(k != i)
            {
                array[k] = e;
            }
        }
    }
};
}


#endif // SORT_H

main.cpp

#include <iostream>
#include "Sort.h"

using namespace std;
using namespace DTLib;

int main()
{
    int array[] = {7, 9, 4, 6, 2};

    Sort::Select(array, 5);

    for(int i = 0; i < 5; i++)
    {
        cout << array[i] << " ";
    }

    cout << endl;

    Sort::Select(array, 5, 0);

    for(int i = 0; i < 5; i++)
    {
        cout << array[i] << " ";
    }

    cout << endl;
 
    Sort::Insert(array, 5);

    for(int i = 0; i < 5; i++)
    {
        cout << array[i] << " ";
    }

    cout << endl;

    Sort::Insert(array, 5, 0);

    for(int i = 0; i < 5; i++)
    {
        cout << array[i] << " ";
    }

    return 0;
}

                        

5、冒泡排序

冒泡排序的基本思想 

               -每次从后向前进行(假设为第i次),j = n-1, n-2, ... , i,两两比较V[j-1]和V[j]的关键字;

                   如果发生逆序,则交换V[j-1]和V[j]。

第i次冒泡排序示例

                

                

               

冒泡排序的实现 Sort::Bubble 

template < typename T>
    static void Bubble(T array[], int len, bool min2max = true)
    {
        bool exchange = true;
        for(int i = 0; i < len && exchange; i++) //如果exchange = false后面已经排序好,不需要排序
        {
            exchange = false;

            for(int j = len - 1; j > i; j--)   
            {
                if(min2max ? array[j] < array[j-1] : array[j] > array[j-1])
                {
                    Swap(array[j], array[j-1]);
                    exchange = true;
                }
            }
        }
    }

main.cpp

#include <iostream>
#include "Sort.h"

using namespace std;
using namespace DTLib;



int main()
{
    int array[] = {7, 9, 4, 6, 2};

    Sort::Bubble(array, 5);

    for(int i = 0; i < 5; i++)
    {
        cout << array[i] << " ";
    }

    cout << endl;

    Sort::Bubble(array, 5, 0);
 
    for(int i = 0; i < 5; i++)
    {
        cout << array[i] << " ";
    }

    cout << endl;

    return 0;
}

 

6、希尔排序

            希尔排序的基本思想

                -将待排序列划分为若干组,在每—组内进行插入排序,以使 

                    整个序列基本有序,然后再对整个序列进行插入排序。 

            希尔排序示例 

                    例如:将n个数据元素分成d个子序列: 

                        { R[1] , R[1+d] , R[1+2d] , ... , R[1+kd]} 

                        { R[2] , R[2+d] , R[2+2d] , ... , R[2+kd]}

                        { R[d] , R[2d] , R[3d] , … , R[kd] , R[(k+1)d] } 

                        其中,d称为增量,它的值在排序过程中从大到小逐渐缩小,直至最后—趟排序减为1。 

            

                 

                

 

希尔排序的实现     Sort::Shell 

template < typename T>
    static void Shell(T array[],int len,bool min2max=true)
    {
        int d = len;

        do
        {
            d = d / 3 + 1;  //实践证明这样效果更好,也可以d--

            for(int i=d;i<len;i+=d)
            {
                int k = i;
                T e = array[i];

                for(int j=i-d;j>=0 && (min2max ? (array[j] > e) : (array[j] < e));j-=d)
                {
                    array[j+d] = array[j];
                    k = j;
                }

                if(k != i)
                {
                    array[k] = e;
                }
            }

        }while(d > 1);
    }

main.cpp

#include <iostream>
#include"Sort.h"

using namespace std;
using namespace DTLib;



int main()
{
    int array[] = {7,9,4,6,2};

    Sort::Shell(array,5);

    for(int i=0;i<5;i++)
    {
        cout<<array[i]<<" ";
    }

    cout<<endl;

    Sort::Shell(array,5,0);

    for(int i=0;i<5;i++)
    {
        cout<<array[i]<<" ";
    }

    cout<<endl;

    return 0;
}

                        

 

7、归并排序

归并排序的基本思想

                -将两个或两个以上的有序序列合并成—个新的有序序列 

                   有序序列V[0]…V[m]和V[m+1]…V[n-1]    V[0]…V[n-1]

                   这种归并方法称为 2 路归并

归并的套路 

                -将3个有序序列归并为—个新的有序序列,称为 3 路归并 

                -将N个有序序列归并为—个新的有序序列,称为 N 路归并 

                -将多个有序序列归并为—个新的有序序列,称为多路归并 

2路归并示例 

                

归并排序的代码实现 

              

 

归并排序的实现     Sort::Merge

#ifndef SORT_H
#define SORT_H

#include"Object.h"

namespace DTLib
{

class Sort : public Object
{
private:
    Sort();
    Sort(const Sort&);
    Sort& operator = (const Sort&);

    template <typename T>
    static void Swap(T& a,T& b)
    {
        T t(a);
        a = b;
        b = t;
    }
    template < typename T>
    static void Merge(T src[],T helper[],int begin,int mid,int end,bool min2max)   //归并
    {
        int i = begin;
        int j = mid + 1;
        int k = begin;  //辅助空间起始位置

        while(i <= mid && j <= end)
        {
            if(min2max ? (src[i] < src[j]) : (src[i] > src[j]))
            {
                helper[k++] = src[i++];
            }
            else
            {
                helper[k++] = src[j++];
            }
        }

        while(i <= mid)
        {
            helper[k++] = src[i++];
        }

        while(j <= end)
        {
            helper[k++] = src[j++];
        }

        for(i=begin;i<=end;i++)
        {
            src[i] = helper[i];
        }
    }

    template < typename T>
    static void Merge(T src[],T helper[],int begin,int end,bool min2max)
    {   

        if(begin < end)
        {
            int mid = (begin + end) / 2;

            Merge(src, helper, begin, mid, min2max);    //左边 二路归并排序==》左边有序
            Merge(src, helper, mid+1, end, min2max);    //右边 二路归并排序==》右边有序
            Merge(src, helper, begin, mid, end, min2max);   
        }
    }


public:

    template < typename T>
    static void Merge(T array[],int len,bool min2max=true)
    {
        T* helper = new T[len];

        if(helper != NULL)
        {
            Merge(array, helper, 0, len-1, min2max);
        }

        delete[] helper;
    }
};
}


#endif // SORT_H

main.cpp

 

#include <iostream>
#include"Sort.h"

using namespace std;
using namespace DTLib;



int main()
{

    int array[] = {7,9,4,6,2,1,3,8,0,5};

    Sort::Merge(array,10);

    for(int i=0;i<10;i++)
    {
        cout<<array[i]<<" ";
    }

    cout<<endl;

    Sort::Merge(array,10,0);

    for(int i=0;i<10;i++)
    {
        cout<<array[i]<<" ";
    }

    cout<<endl;

    return 0;
}

 

                        

 

8、快速排序

            快速排序的基本思想 

                -任取序列中的某个数据元素作为基准将整个序列划分为左右两个 

                    子序列 

                        左侧子序列中所有元素都小于或等于基准元素 

                              右侧子序列中所有元素都大于基准元素

                               基准元素排在这两个子序列中间 

                -分别对这两个子序列重复进行划分,直到所有的数据元素都排在 

                    相应位置上为止 

 

            快速排序示例 

            

                

快速排序的实现     Sort::Quick

#ifndef SORT_H
#define SORT_H

#include"Object.h"

namespace DTLib
{

class Sort : public Object
{
private:
    Sort();
    Sort(const Sort&);
    Sort& operator = (const Sort&);

    template <typename T>
    static void Swap(T& a,T& b)
    {
        T t(a);
        a = b;
        b = t;
    }
 
    template < typename T >
    static int Partition(T array[],int begin,int end,bool min2max)
    {
        T pv = array[begin];

        while(begin < end)
        {
            while( (begin < end) && ( min2max ? (array[end] > pv) : (array[end] < pv) ) )
            {
                end--;
            }

            Swap(array[begin],array[end]);

            while( (begin < end) && ( min2max ? (array[begin] <= pv) : (array[begin] >= pv) ) )
            {
                begin++;
            }

            Swap(array[begin],array[end]);

        }

        array[begin] = pv;

        return begin;
    }

    template < typename T >
    static void Quick(T array[],int begin,int end,bool min2max)
    {
        if(begin < end)
        {
            int pivot = Partition(array,begin,end,min2max);

            Quick(array,begin,pivot-1,min2max);
            Quick(array,pivot+1,end,min2max);
        }
    }

public:
    
    template < typename T >
    static void Quick(T array[],int len,bool min2max=true)
    {
        Quick(array,0,len-1,min2max);
    }

};
}


#endif // SORT_H

main.cpp

#include <iostream>
#include"Sort.h"

using namespace std;
using namespace DTLib;



int main()
{

    int array[] = {7,9,4,6,2,1,3,8,0,5};

    Sort::Quick(array,10);

    for(int i=0;i<10;i++)
    {
        cout<<array[i]<<" ";
    }

    cout<<endl;

    Sort::Quick(array,10,0);

    for(int i=0;i<10;i++)
    {
        cout<<array[i]<<" ";
    }

    cout<<endl;

    return 0;
}

 

                           

9、排序的工程应用示例

排序类(Sort)与数组类(Array)的关系 

                    

编程实验 

排序类与数组类的关系     Array.h     Sort.h 

Array.h提供

    T* array() const
    {
        return m_array;
    }

Sort.h新增

    template < typename T >
    static void Insert(Array<T>& array,bool min2max=true)
    {
        Insert(array.array(), array.length(), min2max);
    }

    template < typename T >
    static void Select(Array<T>& array,bool min2max=true)
    {
        Select(array.array(), array.length(), min2max);
    }

    template < typename T >
    static void Bubble(Array<T>& array,bool min2max=true)
    {
        Bubble(array.array(), array.length(), min2max);
    }

    template < typename T >
    static void Shell(Array<T>& array,bool min2max=true)
    {
        Shell(array.array(), array.length(), min2max);
    }

    template < typename T >
    static void Merge(Array<T>& array,bool min2max=true)
    {
        Merge(array.array(), array.length(), min2max);
    }

    template < typename T >
    static void Quick(Array<T>& array,bool min2max=true)
    {
        Quick(array.array(), array.length(), min2max);
    }

main.cpp

#include <iostream>
#include "StaticArray.h"
#include "Sort.h"

using namespace std;
using namespace DTLib;

int main()
{
    StaticArray<double, 5> sa;

    for(int i=0; i<5; i++)
    {
        sa[i] = i;
    }

    Sort::Insert(sa);

    for(int i=0; i<sa.length(); i++)
    {
        cout << sa[i] << " ";
    }

    cout << endl;

    Sort::Shell(sa, false);

    for(int i=0; i<sa.length(); i++)
    {
        cout << sa[i] << " ";
    }

    return 0;
}

                        

 

待排数据元素为体积庞大的对象时,如何提高排序的效率? 

问题分析 

                -排序过程中不可避免的需要进行交换操作 

                -交换操作的本质为数据元素间的相互复制

                -当数据元素体积较大时,交换操作耗时巨大

解决方案:代理模式 

    1. 为待排数据元素设置代理对象 

    2. 对代理对象所组成的序列进行排序 

    3. 需要访问有序数据元素时,通过访问代理序列完成

            

                

编程实验 

解决方案     Proxy Pattern 

#include <iostream>
#include <ctime>
#include "Sort.h"

using namespace std;
using namespace DTLib;


struct Test : public Object
{
    int id;
    int data1[1000];
    double data2[1000];

    bool operator < (const Test& obj)
    {
        return (id < obj.id);         // 排序时按照id进行排序
    }
    bool operator <= (const Test& obj)
    {
        return (id <= obj.id);
    }
    bool operator > (const Test& obj)
    {
        return (id > obj.id);
    }
    bool operator >= (const Test& obj)
    {
        return (id >= obj.id);
    }
};

class TestProxy : public Object
{
protected:
    Test* m_pTest;
public:

    // 原始对象实现的功能代理对象也实现
    int id()
    {
        return m_pTest->id;
    }

    int* data1()
    {
        return m_pTest->data1;
    }

    double* data2()
    {
        return m_pTest->data2;
    }

    Test& test() const
    {
        return *m_pTest;
    }

    bool operator < (const TestProxy& obj)
    {
        return test() < obj.test();         // 被代理的原始对象的比较
    }
    bool operator <= (const TestProxy& obj)
    {
        return test() <= obj.test();
    }
    bool operator > (const TestProxy& obj)
    {
        return test() > obj.test();
    }
    bool operator >= (const TestProxy& obj)
    {
        return test() >= obj.test();
    }

    Test& operator = (Test& test)
    {
        m_pTest = &test;

        return test;
    }
};

Test t[1000];
TestProxy pt[1000]; // 创建代理数组,对代理对象进行排序

int main()
{
    clock_t begin = 0;
    clock_t end = 0;
    for(int i=0; i<1000; i++)
    {
        t[i].id = i;
        pt[i] = t[i];   // 代理
    }

    begin = clock();

    Sort::Bubble(t, 1000, false);

    end = clock();

    cout << "Time: " << (end - begin) << endl;
  
    return 0;
}

   

修改:

Sort::Bubble(pt, 1000, false);

 

 

10、小结 

            排序是数据元素从无序到有序的过程 

            排序具有稳定性,是选择排序算法的因素之— 

            比较和交换是排序的基本操作 

            多关键字排序与单关键字排序无本质区别 

            排序的时间性能是区分排序算法好坏的主要因素

            选择排序每次选择未排元素中的最小元素 

            插入排序每次将第 i 个元素插入前面 i-1 个已排元素中 

            选择排序是不稳定的排序法,插入排序是稳定的排序方法 

            选择排序和插入排序的时间复杂度为O(n2)

            冒泡排序每次从后向前将较小的元素交互到位 

            冒泡排序是—种稳定的排序法,其复杂度为O(n2)

            希尔排序通过分组的方式进行多次插入排序 

            希尔排序是—种不稳定的排序法,其复杂度为O(n3/2) 

            归并排序需要额外的辅助空间才能完成,空间复杂度为O(n

            归并排序的时间复杂度为O(n*logn) , 是—种稳定的排序法 

            快速排序通过递归的方式对排序问题进行划分 

            快速排序的时间复杂度为O(n*logn) , 是—种不稳定的排序法

     DTLib中的排序类和数组类之间存在关联关系 

     排序类能够对数组类对象进行排序 

     当排序体积庞大的对象时,使用代理模式间接完成 

     代理模式的使用有效避开大对象交换时的耗时操作 

     代理模式解决方案是空间换时间思想的体现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值