Prov-GigaPath:病理基础模型 本地部署 及 使用 (一) 本地部署

代码的下载

官方github链接:prov-gigapath/prov-gigapath: Prov-GigaPath:来自真实世界数据的数字病理学全玻片基础模型 (github.com)

github 代码拉取

git clone https://github.com/prov-gigapath/prov-gigapath

环境配置

这里用conda 创建一个新的虚拟环境

conda create -n 环境名 python=3.9

注:这里的python版本为3.9

torch 安装

这里根据官方给出的pip指令安装即可。要求:torch版本为2.0.0

安装其他库:

pip install omegaconf
pip install torchmetrics==0.10.3
pip install fvcore
pip install iopath
pip install xformers==0.0.18
pip install huggingface-hub==0.20.2
pip install h5py
pip install numpy
pip install pandas
pip install pillow
pip install tqdm
pip install einops
pip install webdataset
pip install matplotlib
pip install lifelines
pip install scikit-survival
pip install scikit-learn
pip install tensorboard
pip install fairscale
pip install wandb
pip install 'timm>=1.0.3'
pip install packaging==23.2
pip install ninja==1.11.1.1
pip install transformers==4.36.2
pip install flash-attn==2.5.8
pip install monai
pip install openslide-python
pip install scikit-image

安装模型本身到库

pip install -e .

模型的下载

下载模型

设置Hugging Face 令牌

导出 HF_TOKEN=HuggingFace 只读令牌

  • 令牌的获取

进入 hugging face 注册账户拥抱脸

需要魔法进入

在设置中找到令牌

添加令牌

记下令牌内容

:令牌之后不能进行查看

利用timm在互联网上拉取模型。

添加令牌

导出 HF_TOKEN=HuggingFace 只读令牌

如果运行时报下面的错误可以尝试在py文件中添加令牌

ValueError:我们没有连接或您传递了local_files_only,因此force_download不是一个可接受的选项。

py 文件中添加令牌的方式:

os.environ[“HF_TOKEN”] = “你的令牌”


 

尝试拉取模型。

tile_encoder = timm.create_model(“hf_hub:prov-gigapath/prov-gigapath”, pretrained=True)

在国内大概率会报网络的错误

可以使用下面的方法运行

发短信

# Linux
export HF_ENDPOINT=https://hf-mirror.com
python ***.py


# Windows
$env:HF_ENDPOINT = "https://hf-mirror.com"
python ***.py

如何可以运行就没问题。

到这里,模型就部署完毕了。

具体的使用方法可以看,demo文件夹里的演示。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值