评估指标篇(整理网上资源,侵删)

原文链接:【深度学习】常用的模型评估指标 - Madcola - 博客园

前提:混淆矩阵

               其中T代表预测正确与否,P代表预测的类别是positive(正例)还是negtive(负例)。因此有:        

        TP+FP+FN+TN = 总样本数。 

        注: TP: 预测为正例且预测正确的样本数

1. accuracy

acc = 预测正确的样本数 / 总样本数

       = (TP + TN)/ (TP + TN + FP + FN)

优点:

        1.几何意义清晰,且易于计算

 缺点:

        1. 当类别不均衡时,指标是不可信的

2. Precision(查准率)

p = 预测为正例且正确的样本数 / 总预测为正例样本数

   = TP / (TP + FP)

表示含义:总的预测为正的样本中,有多少是预测正确的

特点: 

        专注于判断对预测结果的置信度

3. Recall(查全率)

r = 预测为正例且正确的样本数 / 所有正例样本数

  = TP / (TP + FN)

表示含义:在所有正例样本中,召回了多少正例样本

特点:

        专注于判断对某个类别进行预测的置信度(是否能够全面地预测出属于该类别的样本)

4. PRC:

        绘制曲线,其中横坐标Recall, 纵坐标为Precision。

特点:

        1. 对样本不均衡问题不敏感

        2. A完全包含C,证明A比C模型的效果要好。但是A与B之间有交叉,因此无法直接评判两模型的性能优劣。

        注: --> 为了度量A与B交叉这种情况,可通过计算A与B的面积进行比较;除此之外,还可以使用BPE(p=r时平衡点的取值)来进行性能比较。

5. F1-score:

        相对于BPE,更综合的考虑P和R:

        

有macro f1: 不加权的和 micro f1: 加权的等等不同的f1-score

 特点:

        1. 适用于类别不均衡问题,能更综合地考虑P和R

6.ROC和AUC

ROC曲线:横坐标为FPR,纵坐标为TPR

  注:FPR:在所有负例样本中,预测正确的样本数

         TPR:在所有正例样本中,预测正确的样本数

FPR = FP / (FP + TN)

TPR = TP / (TP + FN) 

        其中曲线表示不同threshold下的FPR和TPR的变化情况。因此当 FPR = TPR时即为最佳阈值(也可以根据具体任务选择最佳阈值)

同理:当两条曲线交叉时,可以选择曲线下面积AUC来作为衡量两模型性能的指标。

特点:

        解决类别不平衡问题,同时能够找到最佳阈值(二分类)

7. 拓展:IOU

注: 应用于目标检测领域的评价指标:交并比

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值