【一文看懂】深度学习中常用的各项评价指标含义TP、FP、TN、FN、Accuracy、Recall、F1、IoU、mIoU

在评价一个语义分割模型(多类别)的好坏时,经常涉及TP、FP、TN、FN、Recall、IoU、Accuracy等指标进行衡量,那么这些指标是什么意思呢?
今天有幸请到了鸭子先生、猴子客官和熊猫大大来给大家亲身示范一下。

背景

咦!发现10只可爱的小动物,可是我们不知道是什么动物,要不用深度学习分一下类吧?
在这里插入图片描述
这个时候直接掏出训练好模型,把这些小动物丢进去,一番等待之后,我们有了以下的预测结果:
在这里插入图片描述

很明显,模型并没有非常完美的完成任务。但是如何评价它呢?

0 混淆矩阵

在这里插入图片描述

1 基本指标:TP、FP、TN、FN

对某一类别A来讲:T = true,表示正确分类的;F = false,表示错误分类的;P = Positive,表示预测结果为A;N = Negative,表示预测结果为非A。

  • TP(True Positive): 正确分成A的数目,即预测为A,真值也是A,。
  • FP(False Positive): 错误分成A的数目,即预测为A,真值是非A
  • TN(True Negative): 正确分成非A的数目, 即预测为非A,真值也是非A,。
  • FN(False Negative): 错误分成非A的数目,即预测为非A, 真值是A

那么:对于上述3个动物类别而言(当多类别任务时,TN意义不大):

类别TPFPTNFN
鸭子5131
猴子1171
熊猫2080
>82182

可以看到,对每一个类别而言,TP+FP+TN+FN == 10(共10个动物)

2 准确率(总体):Accuracy

既是 Global Accuracy,Overall Accuracy,OA
解释: 所有小动物分类的准确率,总共10只小动物,其中8只被正确分类。
计算: 8 / 10 = 80.00%

3 准确率、查准率:Precision

解释: 对于类别A而言,其 Precision = 真值为A且预测为A数量 / 预测结果中为A的数量
计算:
P r e c i s i o n A = T P A T P A + F P A Precisio{n_A} = \frac{{T{P_A}}}{{T{P_A} + F{P_A}}} PrecisionA=TPA+FPATPA

  • 鸭子:5 / (5 + 1)= 83.33%
  • 猴子:1 / (1 + 1)= 50.00%
  • 熊猫:2 / (2 + 0)= 100.00%

4 召回率、查全率:Recall

解释: 对于类别A而言,其 Recall = 真值为A且预测为A数量 / 真值中为A的数量
计算:
R e c a l l A = T P A T P A + F N A Recal{l_A} = \frac{{T{P_A}}}{{T{P_A} + F{N_A}}} RecallA=TPA+FNATPA

  • 鸭子:5 / 6= 83.33%
  • 猴子:1 / 2= 50.00%
  • 熊猫:2 / 2= 100.00%

5 F1分数

解释: 对于类别A而言,基于其 Precision 和 Recall 的数学计算
F 1 A = 2 × p r e c i s i o n A × r e c a l l A p r e c i s i o n A + r e c a l l A F1_A = 2 \times \frac{{precision_A \times recall_A}}{{precision_A + recall_A}} F1A=2×precisionA+recallAprecisionA×recallA

6 平均F1分数:mF1

mF1 = 各类别F1求平均值

7 交并比:IoU

解释: 对于类别A而言,其 IoU = 预测结果和真实值的交集 / 并集 , IoU值越接近于1,表示该类的预测结果越好
计算:
I o U A = T P A T P A + F P A + F N A Io{U_A} = \frac{{T{P_A}}}{{T{P_A} + F{P_A} + F{N_A}}} IoUA=TPA+FPA+FNATPA

  • 鸭子: 真实值(6只鸭)预测结果(5只鸭+1只猴),其交集为5只,并集为7只。
    计算:IoU = 5 / 7= 0.714
  • 猴子: 真实值(2只猴)预测结果(1只鸭+1只猴),其交集为1只,并集为3只。
    计算(猴子):IoU = 1 / 3= 0.333
  • 熊猫: 真实值(2只熊)预测结果(2只猫),其交集为2只,并集为2只。
    计算(熊猫):IoU = 2 / 2= 1

可见:

8 平均交并比:mIoU

含义:所有类别的IoU求和,除以类别数目
计算:(0.714 + 0.333 + 1)/ 3 = 0.682

<完>

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值